Located at dapperlib.github.io/Dapper
MyGet Pre-release feed: https://www.myget.org/gallery/dapper
Package | NuGet Stable | NuGet Pre-release | Downloads | MyGet |
---|---|---|---|---|
Dapper | ||||
Dapper.EntityFramework | ||||
Dapper.EntityFramework.StrongName | ||||
Dapper.Rainbow | ||||
Dapper.SqlBuilder | ||||
Dapper.StrongName |
Package Purposes:
- Dapper.EntityFramework
- Extension handlers for EntityFramework
- Dapper.EntityFramework.StrongName
- Extension handlers for EntityFramework
- Dapper.Rainbow
- Micro-ORM implemented on Dapper, provides CRUD helpers
- Dapper.SqlBuilder
- Component for building SQL queries dynamically and composably
- Dapper.StrongName
- High-performance micro-ORM supporting MySQL, Sqlite, SqlICE, and Firebird
Dapper is a NuGet library that you can add in to your project that will extend your IDbConnection
interface.
It provides 3 helpers:
public static IEnumerable<T> Query<T>(this IDbConnection cnn, string sql, object param = null, IDbTransaction transaction = null, bool buffered = true, int? commandTimeout = null, CommandType? commandType = null)
Example usage:
public class Dog
{
public int? Age { get; set; }
public Guid Id { get; set; }
public string Name { get; set; }
public float? Weight { get; set; }
public int IgnoredProperty { get { return 1; } }
}
var guid = Guid.NewGuid();
var dog = connection.Query<Dog>("select Age = @Age, Id = @Id", new { Age = (int?)null, Id = guid });
Assert.Equal(1,dog.Count());
Assert.Null(dog.First().Age);
Assert.Equal(guid, dog.First().Id);
public static IEnumerable<dynamic> Query (this IDbConnection cnn, string sql, object param = null, IDbTransaction transaction = null, bool buffered = true, int? commandTimeout = null, CommandType? commandType = null)
This method will execute SQL and return a dynamic list.
Example usage:
var rows = connection.Query("select 1 A, 2 B union all select 3, 4").AsList();
Assert.Equal(1, (int)rows[0].A);
Assert.Equal(2, (int)rows[0].B);
Assert.Equal(3, (int)rows[1].A);
Assert.Equal(4, (int)rows[1].B);
public static int Execute(this IDbConnection cnn, string sql, object param = null, IDbTransaction transaction = null, int? commandTimeout = null, CommandType? commandType = null)
Example usage:
var count = connection.Execute(@"
set nocount on
create table #t(i int)
set nocount off
insert #t
select @a a union all select @b
set nocount on
drop table #t", new {a=1, b=2 });
Assert.Equal(2, count);
The same signature also allows you to conveniently and efficiently execute a command multiple times (for example to bulk-load data)
Example usage:
var count = connection.Execute(@"insert MyTable(colA, colB) values (@a, @b)",
new[] { new { a=1, b=1 }, new { a=2, b=2 }, new { a=3, b=3 } }
);
Assert.Equal(3, count); // 3 rows inserted: "1,1", "2,2" and "3,3"
Another example usage when you already have an existing collection:
var foos = new List<Foo>
{
{ new Foo { A = 1, B = 1 } }
{ new Foo { A = 2, B = 2 } }
{ new Foo { A = 3, B = 3 } }
};
var count = connection.Execute(@"insert MyTable(colA, colB) values (@a, @b)", foos);
Assert.Equal(foos.Count, count);
This works for any parameter that implements IEnumerable<T>
for some T.
A key feature of Dapper is performance. The following metrics show how long it takes to execute a SELECT
statement against a DB (in various config, each labeled) and map the data returned to objects.
The benchmarks can be found in Dapper.Tests.Performance (contributions welcome!) and can be run via:
dotnet run --project .\benchmarks\Dapper.Tests.Performance\ -c Release -f netcoreapp3.1 -- -f * --join
Output from the latest run is:
BenchmarkDotNet=v0.12.1, OS=Windows 10.0.19041.208 (2004/?/20H1)
Intel Core i7-7700HQ CPU 2.80GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET Core SDK=3.1.201
[Host] : .NET Core 3.1.3 (CoreCLR 4.700.20.11803, CoreFX 4.700.20.12001), X64 RyuJIT
ShortRun : .NET Core 3.1.3 (CoreCLR 4.700.20.11803, CoreFX 4.700.20.12001), X64 RyuJIT
ORM | Method | Return | Mean | StdDev | Error | Gen 0 | Gen 1 | Gen 2 | Allocated |
---|---|---|---|---|---|---|---|---|---|
Belgrade | ExecuteReader | Post | 94.46 ÎĽs | 8.115 ÎĽs | 12.268 ÎĽs | 1.7500 | 0.5000 | - | 8.42 KB |
Hand Coded | DataTable | dynamic | 105.43 ÎĽs | 0.998 ÎĽs | 1.508 ÎĽs | 3.0000 | - | - | 9.37 KB |
Hand Coded | SqlCommand | Post | 106.58 ÎĽs | 1.191 ÎĽs | 1.801 ÎĽs | 1.5000 | 0.7500 | 0.1250 | 7.42 KB |
Dapper | QueryFirstOrDefault<dynamic> | dynamic | 119.52 ÎĽs | 1.320 ÎĽs | 2.219 ÎĽs | 3.6250 | - | - | 11.39 KB |
Dapper | 'Query<dynamic> (buffered)' | dynamic | 119.93 ÎĽs | 1.943 ÎĽs | 2.937 ÎĽs | 2.3750 | 1.0000 | 0.2500 | 11.73 KB |
Massive | 'Query (dynamic)' | dynamic | 120.31 ÎĽs | 1.340 ÎĽs | 2.252 ÎĽs | 2.2500 | 1.0000 | 0.1250 | 12.07 KB |
Dapper | QueryFirstOrDefault<T> | Post | 121.57 ÎĽs | 1.564 ÎĽs | 2.364 ÎĽs | 1.7500 | 0.7500 | - | 11.35 KB |
Dapper | 'Query<T> (buffered)' | Post | 121.67 ÎĽs | 2.913 ÎĽs | 4.403 ÎĽs | 1.8750 | 0.8750 | - | 11.65 KB |
PetaPoco | 'Fetch<T> (Fast)' | Post | 124.91 ÎĽs | 4.015 ÎĽs | 6.747 ÎĽs | 2.0000 | 1.0000 | - | 11.5 KB |
Mighty | Query<T> | Post | 125.23 ÎĽs | 2.932 ÎĽs | 4.433 ÎĽs | 2.2500 | 1.0000 | - | 12.6 KB |
LINQ to DB | Query<T> | Post | 125.76 ÎĽs | 2.038 ÎĽs | 3.081 ÎĽs | 2.2500 | 0.7500 | 0.2500 | 10.62 KB |
PetaPoco | Fetch<T> | Post | 127.48 ÎĽs | 4.283 ÎĽs | 6.475 ÎĽs | 2.0000 | 1.0000 | - | 12.18 KB |
LINQ to DB | 'First (Compiled)' | Post | 128.89 ÎĽs | 2.627 ÎĽs | 3.971 ÎĽs | 2.5000 | 0.7500 | - | 10.92 KB |
Mighty | Query<dynamic> | dynamic | 129.20 ÎĽs | 2.577 ÎĽs | 3.896 ÎĽs | 2.0000 | 1.0000 | - | 12.43 KB |
Mighty | SingleFromQuery<T> | Post | 129.41 ÎĽs | 2.094 ÎĽs | 3.166 ÎĽs | 2.2500 | 1.0000 | - | 12.6 KB |
Mighty | SingleFromQuery<dynamic> | dynamic | 130.59 ÎĽs | 2.432 ÎĽs | 3.677 ÎĽs | 2.0000 | 1.0000 | - | 12.43 KB |
Dapper | 'Contrib Get<T>' | Post | 134.74 ÎĽs | 1.816 ÎĽs | 2.746 ÎĽs | 2.5000 | 1.0000 | 0.2500 | 12.29 KB |
ServiceStack | SingleById<T> | Post | 135.01 ÎĽs | 1.213 ÎĽs | 2.320 ÎĽs | 3.0000 | 1.0000 | 0.2500 | 15.27 KB |
LINQ to DB | First | Post | 151.87 ÎĽs | 3.826 ÎĽs | 5.784 ÎĽs | 3.0000 | 1.0000 | 0.2500 | 13.97 KB |
EF 6 | SqlQuery | Post | 171.00 ÎĽs | 1.460 ÎĽs | 2.791 ÎĽs | 3.7500 | 1.0000 | - | 23.67 KB |
DevExpress.XPO | GetObjectByKey<T> | Post | 172.36 ÎĽs | 3.758 ÎĽs | 5.681 ÎĽs | 5.5000 | 1.2500 | - | 29.06 KB |
Dapper | 'Query<T> (unbuffered)' | Post | 174.40 ÎĽs | 3.296 ÎĽs | 4.983 ÎĽs | 2.0000 | 1.0000 | - | 11.77 KB |
Dapper | 'Query<dynamic> (unbuffered)' | dynamic | 174.45 ÎĽs | 1.988 ÎĽs | 3.340 ÎĽs | 2.0000 | 1.0000 | - | 11.81 KB |
DevExpress.XPO | FindObject<T> | Post | 181.76 ÎĽs | 5.554 ÎĽs | 9.333 ÎĽs | 8.0000 | - | - | 27.15 KB |
DevExpress.XPO | Query<T> | Post | 189.81 ÎĽs | 4.187 ÎĽs | 8.004 ÎĽs | 10.0000 | - | - | 31.61 KB |
EF Core | 'First (Compiled)' | Post | 199.72 ÎĽs | 3.983 ÎĽs | 7.616 ÎĽs | 4.5000 | - | - | 13.8 KB |
NHibernate | Get<T> | Post | 248.71 ÎĽs | 6.604 ÎĽs | 11.098 ÎĽs | 5.0000 | 1.0000 | - | 29.79 KB |
EF Core | First | Post | 253.20 ÎĽs | 3.033 ÎĽs | 5.097 ÎĽs | 5.5000 | - | - | 17.7 KB |
NHibernate | HQL | Post | 258.70 ÎĽs | 11.716 ÎĽs | 17.712 ÎĽs | 5.0000 | 1.0000 | - | 32.1 KB |
EF Core | SqlQuery | Post | 268.89 ÎĽs | 19.349 ÎĽs | 32.516 ÎĽs | 6.0000 | - | - | 18.5 KB |
EF 6 | First | Post | 278.46 ÎĽs | 12.094 ÎĽs | 18.284 ÎĽs | 13.5000 | - | - | 44.18 KB |
EF Core | 'First (No Tracking)' | Post | 280.88 ÎĽs | 8.192 ÎĽs | 13.765 ÎĽs | 3.0000 | 0.5000 | - | 19.38 KB |
NHibernate | Criteria | Post | 304.90 ÎĽs | 2.232 ÎĽs | 4.267 ÎĽs | 11.0000 | 1.0000 | - | 60.29 KB |
EF 6 | 'First (No Tracking)' | Post | 316.55 ÎĽs | 7.667 ÎĽs | 11.592 ÎĽs | 8.5000 | 1.0000 | - | 50.95 KB |
NHibernate | SQL | Post | 335.41 ÎĽs | 3.111 ÎĽs | 4.703 ÎĽs | 19.0000 | 1.0000 | - | 78.86 KB |
NHibernate | LINQ | Post | 807.79 ÎĽs | 27.207 ÎĽs | 45.719 ÎĽs | 8.0000 | 2.0000 | - | 53.65 KB |
Feel free to submit patches that include other ORMs - when running benchmarks, be sure to compile in Release and not attach a debugger (Ctrl+F5).
Alternatively, you might prefer Frans Bouma's RawDataAccessBencher test suite or OrmBenchmark.
Parameters are usually passed in as anonymous classes. This allows you to name your parameters easily and gives you the ability to simply cut-and-paste SQL snippets and run them in your db platform's Query analyzer.
new {A = 1, B = "b"} // A will be mapped to the param @A, B to the param @B
Parameters can also be built up dynamically using the DynamicParameters class. This allows for building a dynamic SQL statement while still using parameters for safety and performance.
var sqlPredicates = new List<string>();
var queryParams = new DynamicParameters();
if (boolExpression)
{
sqlPredicates.Add("column1 = @param1");
queryParams.Add("param1", dynamicValue1, System.Data.DbType.Guid);
} else {
sqlPredicates.Add("column2 = @param2");
queryParams.Add("param2", dynamicValue2, System.Data.DbType.String);
}
DynamicParameters also supports copying multiple parameters from existing objects of different types.
var queryParams = new DynamicParameters(objectOfType1);
queryParams.AddDynamicParams(objectOfType2);
When an object that implements the IDynamicParameters
interface passed into Execute
or Query
functions, parameter values will be extracted via this interface. Obviously, the most likely object class to use for this purpose would be the built-in DynamicParameters
class.
Dapper allows you to pass in IEnumerable<int>
and will automatically parameterize your query.
For example:
connection.Query<int>("select * from (select 1 as Id union all select 2 union all select 3) as X where Id in @Ids", new { Ids = new int[] { 1, 2, 3 } });
Will be translated to:
select * from (select 1 as Id union all select 2 union all select 3) as X where Id in (@Ids1, @Ids2, @Ids3)" // @Ids1 = 1 , @Ids2 = 2 , @Ids2 = 3
Dapper supports literal replacements for bool and numeric types.
connection.Query("select * from User where UserTypeId = {=Admin}", new { UserTypeId.Admin });
The literal replacement is not sent as a parameter; this allows better plans and filtered index usage but should usually be used sparingly and after testing. This feature is particularly useful when the value being injected
is actually a fixed value (for example, a fixed "category id", "status code" or "region" that is specific to the query). For live data where you are considering literals, you might also want to consider and test provider-specific query hints like OPTIMIZE FOR UNKNOWN
with regular parameters.
Dapper's default behavior is to execute your SQL and buffer the entire reader on return. This is ideal in most cases as it minimizes shared locks in the db and cuts down on db network time.
However when executing huge queries you may need to minimize memory footprint and only load objects as needed. To do so pass, buffered: false
into the Query
method.
Dapper allows you to map a single row to multiple objects. This is a key feature if you want to avoid extraneous querying and eager load associations.
Example:
Consider 2 classes: Post
and User
class Post
{
public int Id { get; set; }
public string Title { get; set; }
public string Content { get; set; }
public User Owner { get; set; }
}
class User
{
public int Id { get; set; }
public string Name { get; set; }
}
Now let us say that we want to map a query that joins both the posts and the users table. Until now if we needed to combine the result of 2 queries, we'd need a new object to express it but it makes more sense in this case to put the User
object inside the Post
object.
This is the use case for multi mapping. You tell dapper that the query returns a Post
and a User
object and then give it a function describing what you want to do with each of the rows containing both a Post
and a User
object. In our case, we want to take the user object and put it inside the post object. So we write the function:
(post, user) => { post.Owner = user; return post; }
The 3 type arguments to the Query
method specify what objects dapper should use to deserialize the row and what is going to be returned. We're going to interpret both rows as a combination of Post
and User
and we're returning back a Post
object. Hence the type declaration becomes
<Post, User, Post>
Everything put together, looks like this:
var sql =
@"select * from #Posts p
left join #Users u on u.Id = p.OwnerId
Order by p.Id";
var data = connection.Query<Post, User, Post>(sql, (post, user) => { post.Owner = user; return post;});
var post = data.First();
Assert.Equal("Sams Post1", post.Content);
Assert.Equal(1, post.Id);
Assert.Equal("Sam", post.Owner.Name);
Assert.Equal(99, post.Owner.Id);
Dapper is able to split the returned row by making an assumption that your Id columns are named Id
or id
. If your primary key is different or you would like to split the row at a point other than Id
, use the optional splitOn
parameter.
Dapper allows you to process multiple result grids in a single query.
Example:
var sql =
@"
select * from Customers where CustomerId = @id
select * from Orders where CustomerId = @id
select * from Returns where CustomerId = @id";
using (var multi = connection.QueryMultiple(sql, new {id=selectedId}))
{
var customer = multi.Read<Customer>().Single();
var orders = multi.Read<Order>().ToList();
var returns = multi.Read<Return>().ToList();
...
}
Dapper fully supports stored procs:
var user = cnn.Query<User>("spGetUser", new {Id = 1},
commandType: CommandType.StoredProcedure).SingleOrDefault();
If you want something more fancy, you can do:
var p = new DynamicParameters();
p.Add("@a", 11);
p.Add("@b", dbType: DbType.Int32, direction: ParameterDirection.Output);
p.Add("@c", dbType: DbType.Int32, direction: ParameterDirection.ReturnValue);
cnn.Execute("spMagicProc", p, commandType: CommandType.StoredProcedure);
int b = p.Get<int>("@b");
int c = p.Get<int>("@c");
Dapper supports varchar params, if you are executing a where clause on a varchar column using a param be sure to pass it in this way:
Query<Thing>("select * from Thing where Name = @Name", new {Name = new DbString { Value = "abcde", IsFixedLength = true, Length = 10, IsAnsi = true }});
On SQL Server it is crucial to use the unicode when querying unicode and ANSI when querying non unicode.
Usually you'll want to treat all rows from a given table as the same data type. However, there are some circumstances where it's useful to be able to parse different rows as different data types. This is where IDataReader.GetRowParser
comes in handy.
Imagine you have a database table named "Shapes" with the columns: Id
, Type
, and Data
, and you want to parse its rows into Circle
, Square
, or Triangle
objects based on the value of the Type column.
var shapes = new List<IShape>();
using (var reader = connection.ExecuteReader("select * from Shapes"))
{
// Generate a row parser for each type you expect.
// The generic type <IShape> is what the parser will return.
// The argument (typeof(*)) is the concrete type to parse.
var circleParser = reader.GetRowParser<IShape>(typeof(Circle));
var squareParser = reader.GetRowParser<IShape>(typeof(Square));
var triangleParser = reader.GetRowParser<IShape>(typeof(Triangle));
var typeColumnIndex = reader.GetOrdinal("Type");
while (reader.Read())
{
IShape shape;
var type = (ShapeType)reader.GetInt32(typeColumnIndex);
switch (type)
{
case ShapeType.Circle:
shape = circleParser(reader);
break;
case ShapeType.Square:
shape = squareParser(reader);
break;
case ShapeType.Triangle:
shape = triangleParser(reader);
break;
default:
throw new NotImplementedException();
}
shapes.Add(shape);
}
}
In order to use Non-parameter SQL variables with MySql Connector, you have to add the following option to your connection string:
Allow User Variables=True
Make sure you don't provide Dapper with a property to map.
Dapper caches information about every query it runs, this allows it to materialize objects quickly and process parameters quickly. The current implementation caches this information in a ConcurrentDictionary
object. Statements that are only used once are routinely flushed from this cache. Still, if you are generating SQL strings on the fly without using parameters it is possible you may hit memory issues.
Dapper's simplicity means that many feature that ORMs ship with are stripped out. It worries about the 95% scenario, and gives you the tools you need most of the time. It doesn't attempt to solve every problem.
Dapper has no DB specific implementation details, it works across all .NET ADO providers including SQLite, SQL CE, Firebird, Oracle, MySQL, PostgreSQL and SQL Server.
Dapper has a comprehensive test suite in the test project.
Dapper is in production use at Stack Overflow.