forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-40432][SS][PYTHON] Introduce GroupStateImpl and GroupStateTime…
…out in PySpark ### What changes were proposed in this pull request? This PR introduces GroupStateImpl and GroupStateTimeout in PySpark, and updates Scala codebase to support convenient conversion between PySpark implementation and Scala implementation. Co-authored with HyukjinKwon . This is a breakdown PR of apache#37863. ### Why are the changes needed? This change will be leveraged in SPARK-40434. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? N/A. We will make sure test suites are constructed via E2E manner under SPARK-40431. Closes apache#37889 from HeartSaVioR/SPARK-40432. Lead-authored-by: Jungtaek Lim <[email protected]> Co-authored-by: Hyukjin Kwon <[email protected]> Signed-off-by: Jungtaek Lim <[email protected]>
- Loading branch information
1 parent
193b5b2
commit 5938e84
Showing
4 changed files
with
251 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
import datetime | ||
import json | ||
from typing import Tuple, Optional | ||
|
||
from pyspark.sql.types import DateType, Row, StructType | ||
|
||
__all__ = ["GroupStateImpl", "GroupStateTimeout"] | ||
|
||
|
||
class GroupStateTimeout: | ||
NoTimeout: str = "NoTimeout" | ||
ProcessingTimeTimeout: str = "ProcessingTimeTimeout" | ||
EventTimeTimeout: str = "EventTimeTimeout" | ||
|
||
|
||
class GroupStateImpl: | ||
NO_TIMESTAMP: int = -1 | ||
|
||
def __init__( | ||
self, | ||
# JVM Constructor | ||
optionalValue: Row, | ||
batchProcessingTimeMs: int, | ||
eventTimeWatermarkMs: int, | ||
timeoutConf: str, | ||
hasTimedOut: bool, | ||
watermarkPresent: bool, | ||
# JVM internal state. | ||
defined: bool, | ||
updated: bool, | ||
removed: bool, | ||
timeoutTimestamp: int, | ||
# Python internal state. | ||
keyAsUnsafe: bytes, | ||
valueSchema: StructType, | ||
) -> None: | ||
self._keyAsUnsafe = keyAsUnsafe | ||
self._value = optionalValue | ||
self._batch_processing_time_ms = batchProcessingTimeMs | ||
self._event_time_watermark_ms = eventTimeWatermarkMs | ||
|
||
assert timeoutConf in [ | ||
GroupStateTimeout.NoTimeout, | ||
GroupStateTimeout.ProcessingTimeTimeout, | ||
GroupStateTimeout.EventTimeTimeout, | ||
] | ||
self._timeout_conf = timeoutConf | ||
|
||
self._has_timed_out = hasTimedOut | ||
self._watermark_present = watermarkPresent | ||
|
||
self._defined = defined | ||
self._updated = updated | ||
self._removed = removed | ||
self._timeout_timestamp = timeoutTimestamp | ||
# Python internal state. | ||
self._old_timeout_timestamp = timeoutTimestamp | ||
|
||
self._value_schema = valueSchema | ||
|
||
@property | ||
def exists(self) -> bool: | ||
return self._defined | ||
|
||
@property | ||
def get(self) -> Tuple: | ||
if self.exists: | ||
return tuple(self._value) | ||
else: | ||
raise ValueError("State is either not defined or has already been removed") | ||
|
||
@property | ||
def getOption(self) -> Optional[Tuple]: | ||
if self.exists: | ||
return tuple(self._value) | ||
else: | ||
return None | ||
|
||
@property | ||
def hasTimedOut(self) -> bool: | ||
return self._has_timed_out | ||
|
||
# NOTE: this function is only available to PySpark implementation due to underlying | ||
# implementation, do not port to Scala implementation! | ||
@property | ||
def oldTimeoutTimestamp(self) -> int: | ||
return self._old_timeout_timestamp | ||
|
||
def update(self, newValue: Tuple) -> None: | ||
if newValue is None: | ||
raise ValueError("'None' is not a valid state value") | ||
|
||
self._value = Row(*newValue) | ||
self._defined = True | ||
self._updated = True | ||
self._removed = False | ||
|
||
def remove(self) -> None: | ||
self._defined = False | ||
self._updated = False | ||
self._removed = True | ||
|
||
def setTimeoutDuration(self, durationMs: int) -> None: | ||
if isinstance(durationMs, str): | ||
# TODO(SPARK-40437): Support string representation of durationMs. | ||
raise ValueError("durationMs should be int but get :%s" % type(durationMs)) | ||
|
||
if self._timeout_conf != GroupStateTimeout.ProcessingTimeTimeout: | ||
raise RuntimeError( | ||
"Cannot set timeout duration without enabling processing time timeout in " | ||
"applyInPandasWithState" | ||
) | ||
|
||
if durationMs <= 0: | ||
raise ValueError("Timeout duration must be positive") | ||
self._timeout_timestamp = durationMs + self._batch_processing_time_ms | ||
|
||
# TODO(SPARK-40438): Implement additionalDuration parameter. | ||
def setTimeoutTimestamp(self, timestampMs: int) -> None: | ||
if self._timeout_conf != GroupStateTimeout.EventTimeTimeout: | ||
raise RuntimeError( | ||
"Cannot set timeout duration without enabling processing time timeout in " | ||
"applyInPandasWithState" | ||
) | ||
|
||
if isinstance(timestampMs, datetime.datetime): | ||
timestampMs = DateType().toInternal(timestampMs) | ||
|
||
if timestampMs <= 0: | ||
raise ValueError("Timeout timestamp must be positive") | ||
|
||
if ( | ||
self._event_time_watermark_ms != GroupStateImpl.NO_TIMESTAMP | ||
and timestampMs < self._event_time_watermark_ms | ||
): | ||
raise ValueError( | ||
"Timeout timestamp (%s) cannot be earlier than the " | ||
"current watermark (%s)" % (timestampMs, self._event_time_watermark_ms) | ||
) | ||
|
||
self._timeout_timestamp = timestampMs | ||
|
||
def getCurrentWatermarkMs(self) -> int: | ||
if not self._watermark_present: | ||
raise RuntimeError( | ||
"Cannot get event time watermark timestamp without setting watermark before " | ||
"applyInPandasWithState" | ||
) | ||
return self._event_time_watermark_ms | ||
|
||
def getCurrentProcessingTimeMs(self) -> int: | ||
return self._batch_processing_time_ms | ||
|
||
def __str__(self) -> str: | ||
if self.exists: | ||
return "GroupState(%s)" % (self.get,) | ||
else: | ||
return "GroupState(<undefined>)" | ||
|
||
def json(self) -> str: | ||
return json.dumps( | ||
{ | ||
# Constructor | ||
"optionalValue": None, # Note that optionalValue will be manually serialized. | ||
"batchProcessingTimeMs": self._batch_processing_time_ms, | ||
"eventTimeWatermarkMs": self._event_time_watermark_ms, | ||
"timeoutConf": self._timeout_conf, | ||
"hasTimedOut": self._has_timed_out, | ||
"watermarkPresent": self._watermark_present, | ||
# JVM internal state. | ||
"defined": self._defined, | ||
"updated": self._updated, | ||
"removed": self._removed, | ||
"timeoutTimestamp": self._timeout_timestamp, | ||
} | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters