Skip to content

sailab-code/gnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Graph Neural Network Model

This repo contains a Tensorflow implementation of the Graph Neural Network model.

Install

Requirements

The GNN framework requires the packages tensorflow, numpy, scipy.

To install the requirements you can use the following command

pip install -U -r requirements.txt

Install the latest version of GNN:

pip install gnn

For additional details, please see Install.

Simple usage example

import gnn.GNN as GNN
import gnn.gnn_utils
import Net as n

# Provide your own functions to generate input data
inp, arcnode, nodegraph, labels = set_load()

# Create the state transition function, output function, loss function and  metrics
net = n.Net(input_dim, state_dim, output_dim)

# Create the graph neural network model
g = GNN.GNN(net, input_dim, output_dim, state_dim)

#Training

for j in range(0, num_epoch):
    g.Train(inp, arcnode, labels, count, nodegraph)

    # Validate
    print(g.Validate(inp_val, arcnode_val, labels_val, count, nodegraph_val))

Citing

To cite the GNN implementation please use the following publication:

Rossi, A., Tiezzi, M., Dimitri, G.M., Bianchini, M., Maggini, M., & Scarselli, F. (2018).
"Inductive–Transductive Learning with Graph Neural Networks",
In Artificial Neural Networks in Pattern Recognition (pp.201-212).
Berlin : Springer-Verlag.

Bibtex:

@inproceedings{rossi2018inductive,
  title={Inductive--Transductive Learning with Graph Neural Networks},
  author={Rossi, Alberto and Tiezzi, Matteo and Dimitri, Giovanna Maria and Bianchini, Monica and Maggini, Marco and Scarselli, Franco},
  booktitle={IAPR Workshop on Artificial Neural Networks in Pattern Recognition},
  pages={201--212},
  year={2018},
  organization={Springer}
}

To cite GNN please use the following publication:

F. Scarselli, M. Gori,  A. C. Tsoi, M. Hagenbuchner, G. Monfardini,
"The Graph Neural Network Model", IEEE Transactions on Neural Networks,
vol. 20(1); p. 61-80, 2009.

Bibtex:

@article{Scarselli2009TheGN,
  title={The Graph Neural Network Model},
  author={Franco Scarselli and Marco Gori and Ah Chung Tsoi and Markus Hagenbuchner and Gabriele Monfardini},
  journal={IEEE Transactions on Neural Networks},
  year={2009},
  volume={20},
  pages={61-80}
}

Contributions

In the example folder, file GNN_SimpleNet_TF2.py you can find a tentative all-in-one implementation in Tensorflow 2, a contribution by Rohan Kotwani . We thank him and all the interested users!

You can find a TF 2.x implementation by N.Pancino and P.Bongini (PhD Students @ SAILab) at this repo repo

License

Released under the 3-Clause BSD license (see LICENSE.txt):

Copyright (C) 2004-2019 Matteo Tiezzi
Matteo Tiezzi <[email protected]>
Alberto Rossi <[email protected]>

Releases

No releases published

Packages

No packages published

Languages