Skip to content

Commit

Permalink
fix mislabeling and add is-naive-left-fibration-is-inner-fibration
Browse files Browse the repository at this point in the history
  • Loading branch information
Tashi Walde authored and Tashi Walde committed Oct 6, 2023
1 parent 94f0477 commit 6c71811
Show file tree
Hide file tree
Showing 2 changed files with 32 additions and 10 deletions.
2 changes: 1 addition & 1 deletion src/simplicial-hott/05-segal-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ Slices and coslices can also be defined directly as extension types:
#def coslice'
: U
:= ( t : Δ¹) → A[t ≡ 0₂ ↦ a]
:= ( t : Δ¹) → A [t ≡ 0₂ ↦ a]
#def coslice'-coslice
: coslice A a → coslice'
Expand Down
40 changes: 31 additions & 9 deletions src/simplicial-hott/08-covariant.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,6 @@ This notion agrees with that of a naive left fibration.

```rzk
#def is-left-fibration-is-naive-left-fibration
-- TODO : prove converse
( is-nlf : is-naive-left-fibration A A' α)
: is-left-fibration
:=
Expand All @@ -258,6 +257,30 @@ This notion agrees with that of a naive left fibration.
( is-equiv-coslice-coslice' A (α (a' 0₂)))
( is-nlf (a' 0₂))
#def is-naive-left-fibration-is-left-fibration
( is-lf : is-left-fibration)
: is-naive-left-fibration A A' α
:=
\ a' →
is-equiv-equiv-is-equiv'
( coslice' A' a') (coslice' A (α a'))
( \ σ' t → α (σ' t))
( coslice A' a') (coslice A (α a'))
( coslice-fun A' A α a')
( ( coslice-coslice' A' a', coslice-coslice' A (α a')),
\ _ → refl)
( is-equiv-coslice-coslice' A' a')
( is-equiv-coslice-coslice' A (α a'))
( is-lf (\ t → a'))
#def is-naive-left-fibration-iff-is-left-fibration
: iff
( is-naive-left-fibration A A' α)
( is-left-fibration)
:=
( is-left-fibration-is-naive-left-fibration,
is-naive-left-fibration-is-left-fibration)
#end is-left-fibration
```

Expand Down Expand Up @@ -385,17 +408,17 @@ we immediately deduce that in any left fibration `α : A' → A`,
if `A` is a Segal type, then so is `A'`.

```rzk title="Theorem 8.8, categorical version"
#def is-segal-domain-inner-fibration-is-segal-codomain uses (naiveextext)
#def is-segal-domain-left-fibration-is-segal-codomain uses (naiveextext)
( A' A : U)
( α : A' → A)
( is-inner-fib-α : is-inner-fibration A' A α)
( is-left-fib-α : is-left-fibration A' A α)
( is-segal-A : is-segal A)
: is-segal A'
:=
is-segal-is-local-horn-inclusion A'
( is-local-type-domain-right-orthogonal-is-local-type-codomain
( 2 × 2) Δ² ( \ ts → Λ ts) A' A α
( is-inner-fib-α)
( is-inner-fibration-is-left-fibration A' A α is-left-fib-α)
( is-local-horn-inclusion-is-segal A is-segal-A))
```

Expand Down Expand Up @@ -588,12 +611,11 @@ It immediately follows that if `A` is Segal, then so is `Σ A, C`.
( is-covariant-C : is-covariant A C)
: is-segal A → is-segal (total-type A C)
:=
is-segal-domain-inner-fibration-is-segal-codomain
is-segal-domain-left-fibration-is-segal-codomain
( total-type A C) A (\ (a,_) → a)
( is-inner-fibration-is-left-fibration (total-type A C) A (\ (a,_) → a)
( is-left-fibration-is-naive-left-fibration
( total-type A C) A (\ (a,_) → a)
( is-naive-left-fibration-is-covariant A C is-covariant-C)))
( is-left-fibration-is-naive-left-fibration
( total-type A C) A (\ (a,_) → a)
( is-naive-left-fibration-is-covariant A C is-covariant-C))
```

### Type theoretic proof
Expand Down

0 comments on commit 6c71811

Please sign in to comment.