Skip to content

Commit

Permalink
sparse element-wise multiplication (#323)
Browse files Browse the repository at this point in the history
* sparse element-wise multiplication

* update

* update

* update

* update

---------

Co-authored-by: Andreas Bergmeister <[email protected]>
Co-authored-by: rusty1s <[email protected]>
  • Loading branch information
3 people authored Apr 28, 2023
1 parent 2a73371 commit 13d7a2c
Show file tree
Hide file tree
Showing 3 changed files with 136 additions and 20 deletions.
3 changes: 2 additions & 1 deletion .github/workflows/testing.yml
Original file line number Diff line number Diff line change
Expand Up @@ -48,12 +48,13 @@ jobs:
- name: Install main package
run: |
pip install -e .[test]
python setup.py develop
env:
WITH_METIS: 1

- name: Run test-suite
run: |
pip install pytest pytest-cov
pytest --cov --cov-report=xml
- name: Upload coverage
Expand Down
53 changes: 53 additions & 0 deletions test/test_mul.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
from itertools import product

import pytest
import torch

from torch_sparse import SparseTensor, mul
from torch_sparse.testing import devices, dtypes, tensor


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_sparse_sparse_mul(dtype, device):
rowA = torch.tensor([0, 0, 1, 2, 2], device=device)
colA = torch.tensor([0, 2, 1, 0, 1], device=device)
valueA = tensor([1, 2, 4, 1, 3], dtype, device)
A = SparseTensor(row=rowA, col=colA, value=valueA)

rowB = torch.tensor([0, 0, 1, 2, 2], device=device)
colB = torch.tensor([1, 2, 2, 1, 2], device=device)
valueB = tensor([2, 3, 1, 2, 4], dtype, device)
B = SparseTensor(row=rowB, col=colB, value=valueB)

C = A * B
rowC, colC, valueC = C.coo()

assert rowC.tolist() == [0, 2]
assert colC.tolist() == [2, 1]
assert valueC.tolist() == [6, 6]

@torch.jit.script
def jit_mul(A: SparseTensor, B: SparseTensor) -> SparseTensor:
return mul(A, B)

jit_mul(A, B)


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_sparse_sparse_mul_empty(dtype, device):
rowA = torch.tensor([0], device=device)
colA = torch.tensor([1], device=device)
valueA = tensor([1], dtype, device)
A = SparseTensor(row=rowA, col=colA, value=valueA)

rowB = torch.tensor([1], device=device)
colB = torch.tensor([0], device=device)
valueB = tensor([2], dtype, device)
B = SparseTensor(row=rowB, col=colB, value=valueB)

C = A * B
rowC, colC, valueC = C.coo()

assert rowC.tolist() == []
assert colC.tolist() == []
assert valueC.tolist() == []
100 changes: 81 additions & 19 deletions torch_sparse/mul.py
Original file line number Diff line number Diff line change
@@ -1,27 +1,83 @@
from typing import Optional

import torch
from torch import Tensor
from torch_scatter import gather_csr

from torch_sparse.tensor import SparseTensor


def mul(src: SparseTensor, other: torch.Tensor) -> SparseTensor:
rowptr, col, value = src.csr()
if other.size(0) == src.size(0) and other.size(1) == 1: # Row-wise...
other = gather_csr(other.squeeze(1), rowptr)
pass
elif other.size(0) == 1 and other.size(1) == src.size(1): # Col-wise...
other = other.squeeze(0)[col]
else:
raise ValueError(
f'Size mismatch: Expected size ({src.size(0)}, 1, ...) or '
f'(1, {src.size(1)}, ...), but got size {other.size()}.')
@torch.jit._overload # noqa: F811
def mul(src, other): # noqa: F811
# type: (SparseTensor, Tensor) -> SparseTensor
pass

if value is not None:
value = other.to(value.dtype).mul_(value)

@torch.jit._overload # noqa: F811
def mul(src, other): # noqa: F811
# type: (SparseTensor, SparseTensor) -> SparseTensor
pass


def mul(src, other): # noqa: F811
if isinstance(other, Tensor):
rowptr, col, value = src.csr()
if other.size(0) == src.size(0) and other.size(1) == 1: # Row-wise...
other = gather_csr(other.squeeze(1), rowptr)
pass
# Col-wise...
elif other.size(0) == 1 and other.size(1) == src.size(1):
other = other.squeeze(0)[col]
else:
raise ValueError(
f'Size mismatch: Expected size ({src.size(0)}, 1, ...) or '
f'(1, {src.size(1)}, ...), but got size {other.size()}.')

if value is not None:
value = other.to(value.dtype).mul_(value)
else:
value = other
return src.set_value(value, layout='coo')

assert isinstance(other, SparseTensor)

if not src.is_coalesced():
raise ValueError("The `src` tensor is not coalesced")
if not other.is_coalesced():
raise ValueError("The `other` tensor is not coalesced")

rowA, colA, valueA = src.coo()
rowB, colB, valueB = other.coo()

row = torch.cat([rowA, rowB], dim=0)
col = torch.cat([colA, colB], dim=0)

if valueA is not None and valueB is not None:
value = torch.cat([valueA, valueB], dim=0)
else:
value = other
return src.set_value(value, layout='coo')
raise ValueError('Both sparse tensors must contain values')

M = max(src.size(0), other.size(0))
N = max(src.size(1), other.size(1))
sparse_sizes = (M, N)

# Sort indices:
idx = col.new_full((col.numel() + 1, ), -1)
idx[1:] = row * sparse_sizes[1] + col
perm = idx[1:].argsort()
idx[1:] = idx[1:][perm]

row, col, value = row[perm], col[perm], value[perm]

valid_mask = idx[1:] == idx[:-1]
valid_idx = valid_mask.nonzero().view(-1)

return SparseTensor(
row=row[valid_mask],
col=col[valid_mask],
value=value[valid_idx - 1] * value[valid_idx],
sparse_sizes=sparse_sizes,
)


def mul_(src: SparseTensor, other: torch.Tensor) -> SparseTensor:
Expand All @@ -43,8 +99,11 @@ def mul_(src: SparseTensor, other: torch.Tensor) -> SparseTensor:
return src.set_value_(value, layout='coo')


def mul_nnz(src: SparseTensor, other: torch.Tensor,
layout: Optional[str] = None) -> SparseTensor:
def mul_nnz(
src: SparseTensor,
other: torch.Tensor,
layout: Optional[str] = None,
) -> SparseTensor:
value = src.storage.value()
if value is not None:
value = value.mul(other.to(value.dtype))
Expand All @@ -53,8 +112,11 @@ def mul_nnz(src: SparseTensor, other: torch.Tensor,
return src.set_value(value, layout=layout)


def mul_nnz_(src: SparseTensor, other: torch.Tensor,
layout: Optional[str] = None) -> SparseTensor:
def mul_nnz_(
src: SparseTensor,
other: torch.Tensor,
layout: Optional[str] = None,
) -> SparseTensor:
value = src.storage.value()
if value is not None:
value = value.mul_(other.to(value.dtype))
Expand Down

0 comments on commit 13d7a2c

Please sign in to comment.