Skip to content

Commit

Permalink
Merge pull request #77 from qryxip/doc-for-math
Browse files Browse the repository at this point in the history
Add document for `math`
  • Loading branch information
qryxip authored Oct 23, 2020
2 parents 0b88690 + 581d951 commit 19509cd
Showing 1 changed file with 107 additions and 0 deletions.
107 changes: 107 additions & 0 deletions src/math.rs
Original file line number Diff line number Diff line change
@@ -1,7 +1,31 @@
//! Number-theoretic algorithms.
use crate::internal_math;

use std::mem::swap;

/// Returns $x^n \bmod m$.
///
/// # Constraints
///
/// - $0 \leq n$
/// - $1 \leq m$
///
/// # Panics
///
/// Panics if the above constraints are not satisfied.
///
/// # Complexity
///
/// - $O(\log n)$
///
/// # Example
///
/// ```
/// use ac_library_rs::math;
///
/// assert_eq!(math::pow_mod(2, 10000, 7), 2);
/// ```
#[allow(clippy::many_single_char_names)]
pub fn pow_mod(x: i64, mut n: i64, m: u32) -> u32 {
assert!(0 <= n && 1 <= m && m <= 2u32.pow(31));
Expand All @@ -21,13 +45,73 @@ pub fn pow_mod(x: i64, mut n: i64, m: u32) -> u32 {
r
}

/// Returns an integer $y \in [0, m)$ such that $xy \equiv 1 \pmod m$.
///
/// # Constraints
///
/// - $\gcd(x, m) = 1$
/// - $1 \leq m$
///
/// # Panics
///
/// Panics if the above constraints are not satisfied.
///
/// # Complexity
///
/// - $O(\log m)$
///
/// # Example
///
/// ```
/// use ac_library_rs::math;
///
/// assert_eq!(math::inv_mod(3, 7), 5);
/// ```
pub fn inv_mod(x: i64, m: i64) -> i64 {
assert!(1 <= m);
let z = internal_math::inv_gcd(x, m);
assert!(z.0 == 1);
z.1
}

/// Performs CRT (Chinese Remainder Theorem).
///
/// Given two sequences $r, m$ of length $n$, this function solves the modular equation system
///
/// \\[
/// x \equiv r_i \pmod{m_i}, \forall i \in \\{0, 1, \cdots, n - 1\\}
/// \\]
///
/// If there is no solution, it returns $(0, 0)$.
///
/// Otherwise, all of the solutions can be written as the form $x \equiv y \pmod z$, using integer $y, z\\ (0 \leq y < z = \text{lcm}(m))$.
/// It returns this $(y, z)$.
///
/// If $n = 0$, it returns $(0, 1)$.
///
/// # Constraints
///
/// - $|r| = |m|$
/// - $1 \leq m_{\forall i}$
/// - $\text{lcm}(m)$ is in `i64`
///
/// # Panics
///
/// Panics if the above constraints are not satisfied.
///
/// # Complexity
///
/// - $O(n \log \text{lcm}(m))$
///
/// # Example
///
/// ```
/// use ac_library_rs::math;
///
/// let r = [2, 3, 2];
/// let m = [3, 5, 7];
/// assert_eq!(math::crt(&r, &m), (23, 105));
/// ```
pub fn crt(r: &[i64], m: &[i64]) -> (i64, i64) {
assert_eq!(r.len(), m.len());
// Contracts: 0 <= r0 < m0
Expand Down Expand Up @@ -78,6 +162,29 @@ pub fn crt(r: &[i64], m: &[i64]) -> (i64, i64) {
(r0, m0)
}

/// Returns $\sum_{i = 0}^{n - 1} \lfloor \frac{a \times i + b}{m} \rfloor$.
///
/// # Constraints
///
/// - $0 \leq n \leq 10^9$
/// - $1 \leq m \leq 10^9$
/// - $0 \leq a, b \leq m$
///
/// # Panics
///
/// Panics if the above constraints are not satisfied and overflow or division by zero occurred.
///
/// # Complexity
///
/// - $O(\log(n + m + a + b))$
///
/// # Example
///
/// ```
/// use ac_library_rs::math;
///
/// assert_eq!(math::floor_sum(6, 5, 4, 3), 13);
/// ```
pub fn floor_sum(n: i64, m: i64, mut a: i64, mut b: i64) -> i64 {
let mut ans = 0;
if a >= m {
Expand Down

0 comments on commit 19509cd

Please sign in to comment.