Skip to content

Commit

Permalink
better readme
Browse files Browse the repository at this point in the history
  • Loading branch information
rodluger committed Jan 28, 2021
1 parent 37a9ac9 commit e2e15d5
Show file tree
Hide file tree
Showing 5 changed files with 245 additions and 5 deletions.
6 changes: 6 additions & 0 deletions .github/workflows/docs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,12 @@ jobs:
run: |
make -C docs html
- name: Generate plots for README
shell: bash -l {0}
run: |
python docs/generate_readme_plots.py
mv docs/samples_*.png docs/_build/html/_images
- name: Push
if: ${{ github.event_name != 'pull_request' }}
run: |
Expand Down
129 changes: 128 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,5 +23,132 @@
</p>

<p align="center">
Interpretable gaussian processes for stellar light curves using <a href="https://github.com/rodluger/starry">starry</a>.
Interpretable Gaussian processes for stellar light curves using <a href="https://github.com/rodluger/starry">starry</a>.
</p>

# A Gaussian Process for Stellar Variability

The `starry_process` code implements an interpretable Gaussian process (GP)
for modeling stellar light curves. Whether your goal is to marginalize
over the stellar variability signal (if you think of it as noise)
or to understand the surface features that generated it (if you
think of it as data), this code is for you. The GP implemented here works
just like any other GP you might already use in your analysis, except that
its hyperparameters are *physically interpretable*. These are (among others)
the **radius of the spots**, the
**mean and variance of the latitude distribution**,
the **spot contrast**, and the **number of spots**. Users can also specify
things like the rotational period of the star, the limb darkening parameters,
and the inclination (or marginalize over the inclination if it is not known).

The code is written in Python and relies on the
[Theano package](https://theano-pymc.readthedocs.io/en/stable/index.html),
so a little familiarity with that is recommended. Check out the crash
course [here](https://luger.dev/starry_process/notebooks/Quickstart.html#Compiling-theano-functions).

# Quickstart

Import the main interface:

```python
from starry_process import StarryProcess
```

Draw samples from a Gaussian process with small mid-latitude spots:

```python
# Instantiate the GP
sp = StarryProcess(
r=10, # spot radius in degrees
mu=30, # central spot latitude in degrees
sigma=5, # latitude std. dev. in degrees
c=0.1, # fractional spot contrast
n=10 # number of spots
)

# Draw & visualize a spherical harmonic sample
y = sp.draw_ylm().eval()
sp.visualize(y)

# Compute & plot the flux at some inclination
t = np.linspace(0, 4, 1000)
flux = sp.flux(y, t, i=60).eval()
plt.plot(t, flux)
```

<img src="https://github.com/rodluger/starry_process/raw/gh-pages/_images/samples_0.png"/>

Same as above, but for high-latitude spots:

```python
sp = StarryProcess(r=10, mu=0, sigma=10, c=0.1, n=10)
```

<img src="https://github.com/rodluger/starry_process/raw/gh-pages/_images/samples_1.png"/>

Large equatorial spots:

```python
sp = StarryProcess(r=30, mu=0, sigma=10, c=0.1, n=10)
```

<img src="https://github.com/rodluger/starry_process/raw/gh-pages/_images/samples_2.png"/>

Small, approximately isotropic spots:

```python
sp = StarryProcess(r=10, mu=0, sigma=40, c=0.1, n=10)
```

<img src="https://github.com/rodluger/starry_process/raw/gh-pages/_images/samples_3.png"/>

For more information check out the full
[Quickstart tutorial](https://luger.dev/starry_process/notebooks/Quickstart.html) and
the complete [documentation](https://luger.dev).

# References & Attribution

The code is described in this
[JOSS paper](https://github.com/rodluger/starry_process/raw/joss-paper/joss/paper.pdf).
It is the backbone of the
[Mapping Stellar Surfaces](https://github.com/rodluger/mapping_stellar_surfaces)
paper series, including:

- [Degeneracies in the rotational light curve problem](https://github.com/rodluger/mapping_stellar_surfaces/raw/paper1-pdf/ms.pdf)
- [An interpretable Gaussian process model for stellar light curves](https://github.com/rodluger/mapping_stellar_surfaces/raw/paper2-pdf/ms.pdf)

If you make use of this code in your research, please cite

```
@article{Luger2021a,
author = {{Luger}, Rodrigo and {Foreman-Mackey}, Daniel and
{Hedges}, Christina},
title = {{Mapping stellar surfaces I: Degeneracies in the rotational light curve problem}},
journal = {in preparation},
year = {2021},
url = {https://github.com/rodluger/mapping_stellar_surfaces/raw/paper1-pdf/ms.pdf}
}
```

```
@article{Luger2021b,
author = {{Luger}, Rodrigo and {Foreman-Mackey}, Daniel and
{Hedges}, Christina},
title = {{Mapping stellar surfaces II: An interpretable Gaussian process model for light curves}},
journal = {in preparation},
year = {2021},
url = {https://github.com/rodluger/mapping_stellar_surfaces/raw/paper2-pdf/ms.pdf}
}
```

```
@article{Luger2021c,
author = {{Luger}, Rodrigo and {Foreman-Mackey}, Daniel and
{Hedges}, Christina},
title = {{starry\_process: Interpretable Gaussian processes for stellar light curves}},
journal = {in preparation},
year = {2021},
month = {Jan},
url = {https://github.com/rodluger/starry_process/raw/joss-paper/joss/paper.pdf}
}
```
107 changes: 107 additions & 0 deletions docs/generate_readme_plots.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from starry_process import StarryProcess
import starry
import os


def plot_samples():

# Settings
nsamples = 5
norm = Normalize(vmin=0.5, vmax=1.1)
incs = [15, 30, 45, 60, 75, 90]
t = np.linspace(0, 4, 1000)
cmap = plt.get_cmap("plasma_r")
color = lambda i: cmap(0.1 + 0.8 * i / (len(incs) - 1))
map = starry.Map(15, lazy=False)
kwargs = [
dict(r=10, a=0.40, b=0.27, c=0.1, n=10, seed=0),
dict(r=10, a=0.31, b=0.36, c=0.1, n=10, seed=1),
dict(r=30, a=0.28, b=0.0, c=0.05, n=10, seed=2),
dict(r=10, a=0.06, b=0.0, c=0.1, n=20, seed=3),
]

# One figure per `kwargs`
for n in range(len(kwargs)):

# Set up the plot
fig, ax = plt.subplots(
2,
nsamples + 1,
figsize=(12, 2.5),
gridspec_kw={
"height_ratios": np.array([1, 0.5]),
"width_ratios": np.append(np.ones(nsamples), 0.1),
},
)

# Draw samples
sp = StarryProcess(marginalize_over_inclination=False, **kwargs[n])
y = sp.sample_ylm(nsamples=nsamples).eval()

# Normalize so that the background photosphere
# has unit intensity (for plotting)
y[:, 0] += 1
y *= np.pi

# Visualize each sample
for k in range(nsamples):
map[:, :] = y[k]
map.show(ax=ax[0, k], projection="moll", norm=norm)
ax[0, k].set_ylim(-1.5, 2.25)
ax[0, k].set_rasterization_zorder(1)
for i, inc in enumerate(incs):
map.inc = inc
flux = map.flux(theta=360.0 * t)
flux -= np.mean(flux)
flux *= 1e3
ax[1, k].plot(t, flux, color=color(i), lw=0.75)
if k == 0:
ax[1, k].spines["top"].set_visible(False)
ax[1, k].spines["right"].set_visible(False)
ax[1, k].set_xlabel("rotations", fontsize=8)
ax[1, k].set_ylabel("flux [ppt]", fontsize=8)
ax[1, k].set_xticks([0, 1, 2, 3, 4])
for tick in (
ax[1, k].xaxis.get_major_ticks()
+ ax[1, k].yaxis.get_major_ticks()
):
tick.label.set_fontsize(6)
ax[1, k].tick_params(direction="in")
else:
ax[1, k].axis("off")

# Appearance tweaks
cax = inset_axes(
ax[0, -1], width="70%", height="50%", loc="lower center"
)
cbar = fig.colorbar(
ax[0, k].images[0], cax=cax, orientation="vertical"
)
cbar.set_label("intensity", fontsize=8)
cbar.set_ticks([0.5, 0.75, 1])
cbar.ax.tick_params(labelsize=6)
ax[0, -1].axis("off")
lax = inset_axes(
ax[1, -1], width="80%", height="100%", loc="center right"
)
for i, inc in enumerate(incs):
lax.plot(
0, 0, color=color(i), lw=1, label=r"{}$^\circ$".format(inc)
)
lax.legend(loc="center left", fontsize=5, frameon=False)
lax.axis("off")
ax[1, -1].axis("off")
dy = max([max(np.abs(ax[1, k].get_ylim())) for k in range(nsamples)])
for k in range(nsamples):
ax[1, 0].set_ylim(-dy, dy)

# We're done
fig.savefig("samples_{}.png".format(n), bbox_inches="tight", dpi=100)


if __name__ == "__main__":
plot_samples()
4 changes: 2 additions & 2 deletions joss/figures/samples.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@
cmap = plt.get_cmap("plasma_r")
color = lambda i: cmap(0.1 + 0.8 * i / (len(incs) - 1))
kwargs = [
dict(r=10, a=0.40, b=0.27, c=0.15, N=10, seed=7),
dict(r=15, a=0.31, b=0.36, c=0.075, N=10, seed=8),
dict(r=10, a=0.40, b=0.27, c=0.15, n=10, seed=7),
dict(r=15, a=0.31, b=0.36, c=0.075, n=10, seed=8),
]

map = starry.Map(15, lazy=False)
Expand Down
4 changes: 2 additions & 2 deletions starry_process/sp.py
Original file line number Diff line number Diff line change
Expand Up @@ -1009,8 +1009,8 @@ def flux(
as ``sample_ylm`` can thus be directly passed to this method.
t (vector): The time array in arbitrary units.
i (scalar, optional): The inclination of the star in degrees.
Default is %%defaults["i"]%%. If ``marginalize_over_inclination``
is set, this argument is ignored.
Default is %%defaults["i"]%%. This option is accepted even
if ``marginalize_over_inclination`` is ``True``.
p (scalar, optional): The rotational period of the star in the same
units as ``t``. Default is %%defaults["p"]%%.
u (vector, optional): The limb darkening coefficients for the
Expand Down

0 comments on commit e2e15d5

Please sign in to comment.