-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/rodekruis/river-flood-data-…
- Loading branch information
Showing
4 changed files
with
472 additions
and
75 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
""" | ||
Copyright 2019-2023 European Union | ||
Licensed under the EUPL, Version 1.2 or as soon they will be approved by the European Commission subsequent versions of the EUPL (the "Licence"); | ||
You may not use this work except in compliance with the Licence. | ||
You may obtain a copy of the Licence at: | ||
https://joinup.ec.europa.eu/sites/default/files/inline-files/EUPL%20v1_2%20EN(1).txt | ||
Unless required by applicable law or agreed to in writing, software distributed under the Licence is distributed on an "AS IS" basis, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the Licence for the specific language governing permissions and limitations under the Licence. | ||
""" | ||
|
||
import argparse | ||
import os | ||
import sys | ||
|
||
import numpy as np | ||
import xarray as xr | ||
|
||
|
||
def lmoments(values: np.ndarray) -> np.ndarray: | ||
""" | ||
Compute first 2 L-moments of dataset (on first axis) | ||
:param values: N-D array of values | ||
:return: an estimate of the first two sample L-moments | ||
""" | ||
|
||
nmoments = 3 | ||
|
||
# we need to have at least four values in order | ||
# to make a sample L-moments estimation | ||
nvalues = values.shape[0] | ||
if nvalues < 4: | ||
raise ValueError( | ||
"Insufficient number of values to perform sample L-moments estimation" | ||
) | ||
|
||
# sort the values into ascending order | ||
values = np.sort(values, axis=0) | ||
|
||
sums = np.zeros((nmoments, *(values.shape[1:]))) | ||
|
||
for i in range(1, nvalues + 1): | ||
z = i | ||
term = values[i - 1] | ||
sums[0] = sums[0] + term | ||
for j in range(1, nmoments): | ||
z -= 1 | ||
term = term * z | ||
sums[j] = sums[j] + term | ||
|
||
y = float(nvalues) | ||
z = float(nvalues) | ||
sums[0] = sums[0] / z | ||
for j in range(1, nmoments): | ||
y = y - 1.0 | ||
z = z * y | ||
sums[j] = sums[j] / z | ||
|
||
k = nmoments | ||
p0 = -1.0 | ||
for _ in range(2): | ||
ak = float(k) | ||
p0 = -p0 | ||
p = p0 | ||
temp = p * sums[0] | ||
for i in range(1, k): | ||
ai = i | ||
p = -p * (ak + ai - 1.0) * (ak - ai) / (ai * ai) | ||
temp = temp + (p * sums[i]) | ||
sums[k - 1] = temp | ||
k = k - 1 | ||
|
||
lmoments = np.zeros((2, *(values.shape[1:]))) | ||
lmoments[0] = sums[0] | ||
lmoments[1] = sums[1] | ||
|
||
return lmoments | ||
|
||
|
||
def gumbel_parameters_moments(dis): | ||
sigma = np.sqrt(6) * np.nanstd(dis, ddof=1, axis=0) / np.pi | ||
mu = np.nanmean(dis, axis=0) - 0.5772 * sigma | ||
return sigma, mu | ||
|
||
|
||
def gumbel_parameters_lmoments(dis): | ||
lambda_coef = lmoments(dis) | ||
sigma = lambda_coef[1] / np.log(2) | ||
mu = lambda_coef[0] - sigma * 0.5772 | ||
return sigma, mu | ||
|
||
|
||
def gumbel_function(y, sigma, mu): | ||
return mu - sigma * np.log(np.log(y / (y - 1))) | ||
|
||
|
||
def find_main_var(ds, path): | ||
variable_names = [k for k in ds.variables if len(ds.variables[k].dims) == 3] | ||
if len(variable_names) > 1: | ||
raise Exception("More than one variable in dataset {}".format(path)) | ||
elif len(variable_names) == 0: | ||
raise Exception("Could not find a valid variable in dataset {}".format(path)) | ||
else: | ||
var_name = variable_names[0] | ||
return var_name | ||
|
||
|
||
def read_discharge(in_files): | ||
ds = xr.open_dataset(in_files) | ||
var = find_main_var(ds, in_files) | ||
da = ds[var] | ||
return da | ||
|
||
|
||
def unmask_array(mask, template, data): | ||
data_unmask = np.empty_like(template) | ||
data_unmask[...] = np.NaN | ||
data_unmask[mask] = data | ||
return data_unmask | ||
|
||
|
||
def create_dataset(dis_max, return_periods, mask, thresholds, sigma, mu): | ||
print("Creating dataset") | ||
ds_rp = xr.Dataset( | ||
coords={"lat": dis_max.coords["lat"], "lon": dis_max.coords["lon"]} | ||
) | ||
for i, rp in enumerate(return_periods): | ||
thres = unmask_array(mask, dis_max.isel(time=0).values, thresholds[i]) | ||
ds_rp[f"rl_{rp}"] = (["lat", "lon"], thres) | ||
|
||
s = unmask_array(mask, dis_max.isel(time=0).values, sigma) | ||
print(s.shape) | ||
ds_rp[f"sigma"] = (["lat", "lon"], s) | ||
m = unmask_array(mask, dis_max.isel(time=0).values, mu) | ||
print(m.shape) | ||
ds_rp[f"mu"] = (["lat", "lon"], m) | ||
|
||
print(ds_rp) | ||
|
||
return ds_rp | ||
|
||
|
||
def compute_thresholds_gumbel(dis_max, return_periods): | ||
mask = np.isfinite(dis_max.isel(time=0).values) | ||
dis_max_masked = dis_max.values[:, mask] | ||
|
||
print("Computing Gumbel coefficients") | ||
sigma, mu = gumbel_parameters_lmoments(dis_max_masked) | ||
|
||
print("Computing return periods") | ||
thresholds = [] | ||
for y in return_periods: | ||
dis = gumbel_function(y, sigma, mu) | ||
thresholds.append(dis) | ||
|
||
ds_rp = create_dataset(dis_max, return_periods, mask, thresholds, sigma, mu) | ||
|
||
return ds_rp | ||
|
||
|
||
def main(argv=sys.argv): | ||
prog = os.path.basename(argv[0]) | ||
parser = argparse.ArgumentParser( | ||
description=""" | ||
Utility to compute the discharge return period thresholds | ||
using the method of L-moments. | ||
Thresholds computed: [1.5, 2, 5, 10, 20, 50, 100, 200, 500] | ||
""", | ||
prog=prog, | ||
) | ||
parser.add_argument( | ||
"-d", "--discharge", help="Input discharge files (annual maxima)" | ||
) | ||
parser.add_argument("-o", "--output", help="Output thresholds file") | ||
|
||
args = parser.parse_args() | ||
|
||
dis = read_discharge(args.discharge) | ||
print(dis) | ||
|
||
return_periods = np.array([1.5, 2, 5, 10, 20, 50, 100, 200, 500]) | ||
|
||
thresholds = compute_thresholds_gumbel(dis, return_periods) | ||
|
||
thresholds.to_netcdf(args.output) | ||
|
||
|
||
def main_script(): | ||
sys.exit(main()) | ||
|
||
|
||
if __name__ == "__main__": | ||
main_script() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.