Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

misc fixes #159

Merged
merged 2 commits into from
May 3, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion HSP2/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,11 @@
Authors: Robert Heaphy, Ph.D. and Paul Duda
License: LGPL2
'''
from importlib.metadata import version

from HSP2.main import main
from HSP2.mainDoE import main as mainDoE
from HSP2.utilities import versions, flowtype
from _version import __version__

__version__ = version("hsp2")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

TIL importlib judo. this is a nice solution.


57 changes: 32 additions & 25 deletions HSP2/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,28 +8,35 @@
from pandas import DataFrame, date_range
from pandas.tseries.offsets import Minute
from datetime import datetime as dt
from typing import Union
import os
from HSP2IO.hdf import HDF5
from HSP2.utilities import versions, get_timeseries, expand_timeseries_names, save_timeseries, get_gener_timeseries
from HSP2.configuration import activities, noop, expand_masslinks
from HSP2.state import *

from HSP2IO.io import IOManager, SupportsReadTS, Category

def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None:
"""Runs main HSP2 program.
def main(io_manager:Union[str, IOManager], saveall:bool=False, jupyterlab:bool=True) -> None:
"""
Run main HSP2 program.

Parameters
----------

saveall: Boolean - [optional] Default is False.
io_manager
An instance of IOManager class.
saveall: bool, default=False
Saves all calculated data ignoring SAVE tables.
jupyterlab: Boolean - [optional] Default is True.
Flag for specific output behavior for jupyter lab.
Return
------------
jupyterlab: bool, default=True
Flag for specific output behavior for jupyter lab.

Returns
-------
None

"""
if isinstance(io_manager, str):
hdf5_instance = HDF5(io_manager)
io_manager = IOManager(hdf5_instance)

hdfname = io_manager._input.file_path
if not os.path.exists(hdfname):
Expand All @@ -46,12 +53,12 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
ddext_sources = uci_obj.ddext_sources
ddgener = uci_obj.ddgener
uci = uci_obj.uci
siminfo = uci_obj.siminfo
siminfo = uci_obj.siminfo
ftables = uci_obj.ftables
specactions = uci_obj.specactions
monthdata = uci_obj.monthdata
specactions = {} # placeholder till added to uci parser

start, stop = siminfo['start'], siminfo['stop']

copy_instances = {}
Expand All @@ -64,12 +71,12 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
state = init_state_dicts()
state_siminfo_hsp2(uci_obj, siminfo)
# Add support for dynamic functins to operate on STATE
# - Load any dynamic components if present, and store variables on objects
# - Load any dynamic components if present, and store variables on objects
state_load_dynamics_hsp2(state, io_manager, siminfo)
# - finally stash specactions in state, not domain (segment) dependent so do it once
state['specactions'] = specactions # stash the specaction dict in state
#######################################################################################

# main processing loop
msg(1, f'Simulation Start: {start}, Stop: {stop}')
tscat = {}
Expand All @@ -80,7 +87,7 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
siminfo['steps'] = len(siminfo['tindex'])

if operation == 'COPY':
copy_instances[segment] = activities[operation](io_manager, siminfo, ddext_sources[(operation,segment)])
copy_instances[segment] = activities[operation](io_manager, siminfo, ddext_sources[(operation,segment)])
elif operation == 'GENER':
try:
ts = get_timeseries(io_manager, ddext_sources[(operation, segment)], siminfo)
Expand All @@ -102,7 +109,7 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
flags['ADNHFG'] = uci[(operation, 'NUTRX', segment)]['FLAGS']['ADNHFG']
flags['PO4FG'] = uci[(operation, 'NUTRX', segment)]['FLAGS']['PO4FG']
flags['ADPOFG'] = uci[(operation, 'NUTRX', segment)]['FLAGS']['ADPOFG']

get_flows(io_manager, ts, flags, uci, segment, ddlinks, ddmasslinks, siminfo['steps'], msg)

for activity, function in activities[operation].items():
Expand All @@ -118,7 +125,7 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
msg(3, f'{activity}')
# Set context for dynamic executables.
state_context_hsp2(state, operation, segment, activity)

ui = uci[(operation, activity, segment)] # ui is a dictionary
if operation == 'PERLND' and activity == 'SEDMNT':
# special exception here to make CSNOFG available
Expand Down Expand Up @@ -182,7 +189,7 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
elif flags['PLANK']:
if 'CFSAEX' in uci[(operation, 'PLANK', segment)]['PARAMETERS']:
ui['PARAMETERS']['CFSAEX'] = uci[(operation, 'PLANK', segment)]['PARAMETERS']['CFSAEX']

if activity == 'RQUAL':
# RQUAL inputs:
ui['advectData'] = uci[(operation, 'ADCALC', segment)]['adcalcData']
Expand All @@ -202,12 +209,12 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
ui['PARAMETERS']['NCONS'] = uci[(operation, 'CONS', segment)]['PARAMETERS']['NCONS']

# OXRX module inputs:
ui_oxrx = uci[(operation, 'OXRX', segment)]
ui_oxrx = uci[(operation, 'OXRX', segment)]

if flags['HYDR']:
ui_oxrx['PARAMETERS']['LEN'] = uci[(operation, 'HYDR', segment)]['PARAMETERS']['LEN']
ui_oxrx['PARAMETERS']['DELTH'] = uci[(operation, 'HYDR', segment)]['PARAMETERS']['DELTH']

if flags['HTRCH']:
ui_oxrx['PARAMETERS']['ELEV'] = uci[(operation, 'HTRCH', segment)]['PARAMETERS']['ELEV']

Expand All @@ -221,17 +228,17 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None
ui['PARAMETERS']['CFSAEX'] = uci[(operation, 'HTRCH', segment)]['PARAMETERS']['CFSAEX']

# NUTRX, PLANK, PHCARB module inputs:
ui_nutrx = uci[(operation, 'NUTRX', segment)]
ui_plank = uci[(operation, 'PLANK', segment)]
ui_phcarb = uci[(operation, 'PHCARB', segment)]
ui_nutrx = uci[(operation, 'NUTRX', segment)]
ui_plank = uci[(operation, 'PLANK', segment)]
ui_phcarb = uci[(operation, 'PHCARB', segment)]

############ calls activity function like snow() ##############
if operation not in ['COPY','GENER']:
if (activity == 'HYDR'):
errors, errmessages = function(io_manager, siminfo, ui, ts, ftables, state)
elif (activity != 'RQUAL'):
errors, errmessages = function(io_manager, siminfo, ui, ts)
else:
else:
errors, errmessages = function(io_manager, siminfo, ui, ui_oxrx, ui_nutrx, ui_plank, ui_phcarb, ts, monthdata)
###############################################################

Expand All @@ -256,7 +263,7 @@ def main(io_manager:IOManager, saveall:bool=False, jupyterlab:bool=True) -> None

if 'SAVE' in ui:
save_timeseries(io_manager,ts,ui['SAVE'],siminfo,saveall,operation,segment,activity,jupyterlab,outstep)

if (activity == 'RQUAL'):
if 'SAVE' in ui_oxrx: save_timeseries(io_manager,ts,ui_oxrx['SAVE'],siminfo,saveall,operation,segment,'OXRX',jupyterlab,outstep_oxrx)
if 'SAVE' in ui_nutrx and flags['NUTRX'] == 1: save_timeseries(io_manager,ts,ui_nutrx['SAVE'],siminfo,saveall,operation,segment,'NUTRX',jupyterlab,outstep_nutrx)
Expand Down
Empty file added HSP2IO/__init__.py
Empty file.
44 changes: 22 additions & 22 deletions HSP2IO/hdf.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
from typing import Any, Union

import pandas as pd
from pandas.io.pytables import read_hdf
from HSP2IO.protocols import Category
from collections import defaultdict
from typing import Union, Any

from HSP2.uci import UCI
from HSP2IO.protocols import Category

class HDF5():

class HDF5:

def __init__(self, file_path:str) -> None:
self.file_path = file_path
Expand All @@ -24,9 +24,9 @@ def __exit__(self, exc_type, exc_value, trace):

def read_uci(self) -> UCI:
"""Read UCI related tables

Parameters: None

Returns: UCITuple

"""
Expand Down Expand Up @@ -78,44 +78,44 @@ def read_uci(self) -> UCI:
uci.monthdata[f'{op}/{module}'] = self._store[path]
return uci

def read_ts(self,
def read_ts(self,
category:Category,
operation:Union[str,None]=None,
segment:Union[str,None]=None,
operation:Union[str,None]=None,
segment:Union[str,None]=None,
activity:Union[str,None]=None) -> pd.DataFrame:
try:
path = ''
if category == category.INPUTS:
path = f'TIMESERIES/{segment}'
elif category == category.RESULTS:
path = f'RESULTS/{operation}_{segment}/{activity}'
return read_hdf(self._store, path)
return pd.read_hdf(self._store, path)
except KeyError:
return pd.DataFrame()

def write_ts(self,
data_frame:pd.DataFrame,
def write_ts(self,
data_frame:pd.DataFrame,
category: Category,
operation:str,
segment:str,
activity:str,
*args:Any,
operation:str,
segment:str,
activity:str,
*args:Any,
**kwargs:Any) -> None:
"""Saves timeseries to HDF5"""
path=f'{operation}_{segment}/{activity}'
if category:
path = 'RESULTS/' + path
complevel = None
complevel = None
if 'compress' in kwargs:
if kwargs['compress']:
complevel = 9
data_frame.to_hdf(self._store, path, format='t', data_columns=True, complevel=complevel)
#data_frame.to_hdf(self._store, path)
data_frame.to_hdf(self._store, key=path, format='t', data_columns=True, complevel=complevel)
#data_frame.to_hdf(self._store, key=path)

def write_log(self, hsp2_log:pd.DataFrame) -> None:
hsp2_log.to_hdf(self._store, 'RUN_INFO/LOGFILE', data_columns=True, format='t')
hsp2_log.to_hdf(self._store, key='RUN_INFO/LOGFILE', data_columns=True, format='t')

def write_versioning(self, versioning:pd.DataFrame) -> None:
versioning.to_hdf(self._store, 'RUN_INFO/VERSIONS', data_columns=True, format='t')
versioning.to_hdf(self._store, key='RUN_INFO/VERSIONS', data_columns=True, format='t')


Loading
Loading