Interactive Jupyter widgets to visualize images, point sets, and meshes on the web.
Key Features:
- Visualize 2D and 3D images, point sets, and geometry, e.g. meshes, in Jupyter
- Support for
- NumPy array images
- itk.Image
- Dask array images
- vtk.vtkImageData
- pyvista.UniformGrid
- vedo.Volume
- pyimagej ImageJ / Fiji / ImageJ2 images
- Additional NumPy array-like objects
- SimpleITK.Image
- NumPy array point sets
- itk.PointSet
- itk.PointBasedSpatialObject
- vtk.vtkPolyData point sets
- pyvista.PolyData point sets
- itk.Mesh
- itk.PolyLineParametricPath
- vtk.vtkPolyData
- vtk.vtkStructuredGrid
- vtk.vtkUnstructuredGrid
- vtk.vtkActor
- vtk.vtkVolume
- vtk.vtkAssembly
- pyvista.PolyData
- pyvista.StructuredGrid
- pyvista.UnstructuredGrid
- vedo.Actor
- vedo.Assembly
- skan.csr.Skeleton
- Exquisite volume rendering
- Tri-plane volume slicing
- Innovative, powerful opacity transfer function / window / level widget
- Label image segmentation 2D and 3D rendering
- Anisotropic voxel spacing supported
- Image line profile widget
- Image statistics widget
- Compare images widget
- Widgets to select solid colors for geometry or colormaps when point data or cell data is available
- Visualize point sets as points or spheres and interactively adjust the point size
- Combine with other ipywidgets to quickly create graphical interfaces that interactively provide insights into data algorithms
These widgets are designed to support spatial analysis with the Insight Toolkit (ITK), but they work equally well with other spatial analysis tools in the scientific Python ecosystem.
These widgets are built on itk.js and vtk.js.
Data types:
- Binder: 2D ITK Images
- Binder: 3D ITK Images
- Binder: 3D Label Images
- Binder: Dask Array images
- Binder: Large volumes
- Binder: NumPy array images (processed with SciPy)
- Binder: NumPy array images (processed with scikit-image)
- Binder: NumPy array for image with anisotropic spacing
- Binder: NumPy array point sets
- Binder: ITK Mesh
- Binder: ITK PointBasedSpatialObject
- Binder: skan segmentation skeleton
- Binder: skan segmentation skeleton
Recipes:
- Binder: Compare images with a checkerboard pattern
- Binder: Compare images side by side
- Binder: Examine a line profile
- Binder: Inspect image label statistics
- Binder: Interactively explore algorithm parameters
- Binder: Record a video
- Binder: Restore a volume opacity transfer function
- Binder: Select a region of interest
- Binder: Specify camera parameters
- Binder: Specify a colormap
To install the widgets for the Jupyter Notebook with pip:
pip install itkwidgets
For Jupyter Lab, additionally, run:
jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-matplotlib jupyterlab-datawidgets itkwidgets
Note
JupyterLab 3 support is not yet available. JupyterLab 2 or the Jupyter Notebook are possible alternatives.
In Jupyter, import the view
function:
from itkwidgets import view
Then, call the view
function at the end of a cell, passing in the image to
examine:
view(image)
For information on additional options, see the view
function docstring:
view?
Other available widgets:
itkwidgets.line_profile
: Plot an intensity line profile.itkwidgets.checkerboard
: Compare two images in a checkerboard pattern.itkwidgets.compare
: Compare two images side-by-side.
You can use itkwidgets
from within a docker container with jupyterlab.
To create a local docker image:
Install docker
and build the docker image with:
git clone https://github.com/InsightSoftwareConsortium/itkwidgets cd itkwidgets/docker IMAGE=itkwidgets:0.1.0 docker build -t $IMAGE .
Then run the docker container with:
EXAMPLESDIR=`pwd`/../examples docker run -it --rm -v $EXAMPLESDIR:/home/jovyan -p 8888:8888 itkwidgets:0.1.0
Finally, connect to your notebook at http://127.0.0.1:8888/lab
The itkwidgets are based on ipywidgets. As a consequence, widgets traits can be queried, assigned, or observed with the viewer object returned by the view function. itkwidgets can be combined with other ipywidgets to quickly explore algorithm parameters, create graphical interfaces, or create data visualization dashboards.
- Left click + drag
- Rotate
- Right click + drag or shift + left click + drag
- Pan
- Mouse wheel or control + left click + drag or pinch
- Zoom
- Alt + left click + drag left-right
- Change color transfer function window
- Shift + left click + drag top-bottom
- Change color transfer function level
- Shift + alt + left click + drag top-bottom
- Change primary Gaussian volume opacity transfer function magnitude
Keyboard shortcuts take effect when the mouse is positioned inside the viewer. All shortcuts are prefixed with Alt+. Corresponding keys for the Dvorak keyboard layout have the same effect.
- Alt + 1
- X-plane mode
- Alt + 2
- Y-plane mode
- Alt + 3
- Z-plane mode
- Alt + 4
- Volume rendering mode
- Alt + q
- Toggle user interface
- Alt + w
- Toggle region of interest (ROI) selection widget
- Alt + e
- Reset ROI
- Alt + r
- Reset camera
- Alt + s
- Toggle slicing planes in volume rendering mode
- Alt + f
- Toggle fullscreen
After installation, try the following examples that demonstrate how to visualize:
- 2D ITK Images
- 3D ITK Images
- 3D Label maps
- Dask Array images
- Large volumes
- ImageJ ImgLib2 images (requires conda and a local Fiji installation)
- NumPy array images (processed with SciPy)
- NumPy array images (processed with scikit-image)
- NumPy array for image with anisotropic spacing
- VTK vtkImageData
- pyvista UniformGrid
- NumPy array point sets
- ITK Mesh
- ITK PointBasedSpatialObject
- VTK vtkPolyData
- VTK vtkUnstructuredGrid
- pyvista PolyData
- pyvista StructuredGrid
- pyvista UnstructuredGrid
- pyvista LiDAR
- vedo actors and volumes
- skan segmentation skeleton
or how to:
- Compares images with a checkerboard pattern
- Compares images side by side
- Examine a line profile
- Inspect image label statistics
- Interactively explore algorithm parameters
- Record a video
- Restore a volume opacity transfer function
- Select a region of interest
- Specify camera parameters
- Specify a colormap
If you experience the notebook warning:
IOPub data rate exceeded. The notebook server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--NotebookApp.iopub_data_rate_limit`.
Set the notebook configuration value:
jupyter notebook --NotebookApp.iopub_data_rate_limit=1e12
Cell output scrolls by default in JupyterLab. To disable scrolling, right click in the region to the left of the output and select Disable Scrolling for Outputs.
If Permission denied errors occur during installation, install the Python package with user permission via:
pip install --user itkwidgets
For JupyterLab extension installation, configure JupyterLab to use your user application directory by setting the environmental variable, JUPYTERLAB_DIR:
export JUPYTERLAB_DIR=$HOME/.local/share/jupyter/lab
Check that this is picked up in the value of the Application directory reported by:
jupyter lab path
Then, install the extension as usual:
jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-matplotlib jupyterlab-datawidgets itkwidgets
Participation is welcome! For a development installation (requires Node.js):
git clone https://github.com/InsightSoftwareConsortium/itkwidgets.git cd itkwidgets python -m pip install -r requirements-dev.txt -r requirements.txt python -m pip install -e . jupyter nbextension install --py --symlink --sys-prefix itkwidgets jupyter nbextension enable --py --sys-prefix itkwidgets jupyter nbextension enable --py --sys-prefix widgetsnbextension python -m pytest python -m pytest --nbmake examples/*.ipynb
The above commands will setup your system for development with the Jupyter Notebook. In one terminal, start Jupyter:
cd itkwidgets jupyter notebook
In another terminal, put Webpack in watch mode to rebuild any Javascript changes when you save a Javascript file:
cd itkwidgets npm run watch
If Python code is changed, restart the kernel to see the changes. If Javascript code is changed, reload the page after to Webpack has finished building.
To develop for Jupyter Lab, additionally run:
jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-matplotlib jupyterlab-datawidgets jupyter-webrtc jupyter labextension install ./js jupyter lab --watch
Note
Historical note: this project was previously named itk-jupyter-widgets, but it was renamed to itkwidgets to be consistent with the package name.
Warning
This project is under active development. Its API and behavior may change at any time. We mean it.