with one General Principle
Our project has implemented the training process of the self-reference AI feedback with one general principle. We also partially refactoring the OpenRLHF framework to improve the efficiency of the PPO algorithm.
git clone [email protected]:rbao2018/self_ref_feedback.git
cd self_ref_feedback
bash install.sh
Note
vLLM and flash-attn will specify the versions of PyTorch and CUDA. We recommend installing them on machines with CUDA version >= 12. We recommend using vLLM 0.4.2, as versions 0.4.3+ currently only support weight synchronization (DeepSpeed to vLLM) via Gloo (--vllm_sync_backend gloo
).
NNODES=1
DATASET=/root/Self_Ref_Feedback/llama2_70b_7b_mavo_4_ref
PROBS=0.95
BS=4
LR=1e-5
LOGDIR=/root/log
PREFIX=test
if [ "$LOGDIR" == "" ]; then
LOGDIR=/root/output
fi
if [ "$PREFIX" == "" ]; then
PREFIX=test
fi
if [ "$NNODES" == "1" ]; then
MASTER_ADDR=localhost
RANK=0
fi
mkdir -p $LOGDIR/$PREFIX
export TOKENIZERS_PARALLELISM=true
export OMP_NUM_THREADS=8
export MAX_JOBS=32
export MAX_SEQ_LEN=2048
export NCCL_ALGO=Tree
now_date=$(date +%Y_%m%d_%H%M)
torchrun --nproc_per_node 8 --nnodes $NNODES --master_addr $MASTER_ADDR --master_port 6666 --node_rank $RANK /root/self_ref_feedback/train_rm_llama2.py \
--logging_path $LOGDIR/$PREFIX \
--save_path /root/temp/output/$PREFIX \
--save_steps -1 \
--logging_steps 10 \
--eval_steps 128 \
--train_batch_size 256 \
--critic_train_batch_size $BS \
--pretrain /root/huggingface/models/Llama-2-7b-hf \
--packing_samples \
--loss logexpwithlm \
--apply_chat_template \
--prompt_key message \
--chosen_key chose \
--rejected_key reject \
--max_epochs 1 \
--zero_stage 3 \
--max_len $MAX_SEQ_LEN \
--learning_rate $LR \
--dataset $DATASET \
--dataset_probs $PROBS \
--use_wandb \
--bf16 \
--flash_attn \
--gradient_checkpointing
# RM samples packing
# --packing_samples
Note
We have made further improvements to the --packing_samples
method implemented in the OpenRLHF framework. [based on --flash_attn
] (https://github.com/OpenRLHF/OpenRLHF/blob/v0.3.8/openrlhf/models/packing_utils.py)
# launch the master node of ray in container
ray start --head --node-ip-address 0.0.0.0 --num-gpus 8
# if you want to launch ray on more nodes, use
ray start --address {MASTER-NODE-ADDRESS}:6379 --num-gpus 8
export TOKENIZERS_PARALLELISM=true
export OMP_NUM_THREADS=8
export MAX_JOBS=32
export NCCL_ALGO=Tree
ray job submit --runtime-env-json='{"working_dir": "/root/some_dir"}' -- python /root/self_ref_feedback/fsdp_ppo_ray.py \
--colocate_actor_ref \
--colocate_critic_reward \
--actor_num_nodes 1 \
--actor_num_gpus_per_node 4 \
--ref_num_nodes 1 \
--ref_num_gpus_per_node 4 \
--reward_num_nodes 1 \
--reward_num_gpus_per_node 2 \
--critic_num_nodes 1 \
--critic_num_gpus_per_node 2 \
--colocate_reward_ref \
--vllm_tensor_parallel_size 1 \
--vllm_num_engines 2 \
--pretrain /root/meta-llama/Llama-2-7b-chat-hf \ # for test
--reward_pretrain /root/meta-llama/Llama-2-7b-chat-hf \ # for test
--logging_path /root/temp/output/log \
--save_path /root/temp/output/save_model \
--critic_train_batch_size 4 \
--actor_train_batch_size 8 \
--train_batch_size 128 \
--rollout_batch_size 128 \
--micro_rollout_batch_size 16 \
--num_episodes 1 \
--max_epochs 1 \
--logging_steps 1 \
--apply_chat_template \
--input_key message \
--prompt_max_len 1024 \
--generate_max_len 1024 \
--repetition_penalty 1.02 \
--bf16 \
--packing_samples \
--actor_learning_rate 1e-6 \
--critic_learning_rate 5e-6 \
--init_kl_coef 0.01 \
--prompt_data /root/Self_Ref_Feedback/llama2_70b_7b_mavo_4_ref \
--prompt_data_probs 1.0 \
--use_wandb \
--actor_init_on_gpu \
--gradient_checkpointing \
--flash_attn
Note
Do not set --vllm_num_engines
means not using the vLLM engine.
You can also use setup_commands
to let Ray automatically deploy the environment, such as --runtime-env-json='{"setup_commands": ["pip install openrlhf[vllm]"]}'
.
- Utilize lmdeploy for deploying models, enabling quick access to AI feedback and model generation.
- Replace the original Deepspeed framework with the FSDP framework to reduce GPU memory usage and increase training speed.
- Optimize the scheduling algorithm for asynchronous actor-critic training in the PPO training process to enhance overall framework efficiency.
- Improve the implementation of experience replay generation to avoid the inefficiency of multiple small-batch reply generations by Vllm.
The code is licensed under Apache-2.0, while model weights are fully open for academic research.
We would like to express our gratitude to the following projects and organizations for their contributions to the field of generative AI: