Skip to content

3D Bounding Box Estimation Using Deep Learning and Geometry (MultiBin)

License

Notifications You must be signed in to change notification settings

raytu/3D-Deepbox

 
 

Repository files navigation

3D Bounding Box Estimation Using Deep Learning and Geometry

A Tensorflow implementation of the paper: Mousavian, Arsalan, et al. 3D Bounding Box Estimation Using Deep Learning and Geometry by Fu-Hsiang Chan.

The aim of this project is to predict the size of the bounding box and orientation of the object in 3D space from a single two dimensional image.

Prerequisites

  1. TensorFlow
  2. Numpy
  3. OpenCV
  4. tqdm

Installation

  1. Clone the repository
    git clone https://github.com/smallcorgi/3D-Deepbox.git
  2. Download the KITTI object detection dataset, calib and label (http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d).
  3. Download the weights file (vgg_16.ckpt).
    cd $3D-Deepbox_ROOT
    wget http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
    tar zxvf vgg_16_2016_08_28.tar.gz
  4. Compile evaluation code
    g++ -O3 -DNDEBUG -o ./kitti_eval/evaluate_object_3d_offline ./kitti_eval/evaluate_object_3d_offline.cpp
  5. KITTI train/val split used in 3DOP/Mono3D/MV3D

Usage

Train model

python main.py --mode train --gpu [gpu_id] --image [train_image_path] --label [train_label_path] --box2d [train_2d_boxes]

Test model

python main.py --mode test --gpu [gpu_id] --image [test_image_path] --box2d [test_2d_boxes_path] --model [model_path] --output [output_file_path]

Evaluation on kitti

./kitti_eval/evaluate_object_3d_offline [ground_truth_path] [predict_path]

Result

car_detection AP: 100.000000 100.000000 100.000000

car_orientation AP: 98.482552 95.809959 91.975380

pedestrian_detection AP: 100.000000 100.000000 100.000000

pedestrian_orientation AP: 76.835083 74.943863 71.997620

cyclist_detection AP: 100.000000 100.000000 100.000000

cyclist_orientation AP: 89.908524 81.029915 79.436340

car_detection_ground AP: 90.743927 85.268692 76.673523

pedestrian_detection_ground AP: 97.148033 98.034355 98.376617

cyclist_detection_ground AP: 82.906242 82.897720 75.573006

Eval 3D bounding boxes

car_detection_3d AP: 84.500374 84.358612 75.764938

pedestrian_detection_3d AP: 96.662766 97.702209 89.280357

cyclist_detection_3d AP: 80.711548 81.337944 74.269547

Visualization

mv "output_file" ./validation/result_2
cd ./3D-Deepbox/visualization
run run_demo.m

References

  1. https://github.com/shashwat14/Multibin
  2. https://github.com/experiencor/didi-starter/tree/master/simple_solution
  3. https://github.com/experiencor/image-to-3d-bbox
  4. https://github.com/prclibo/kitti_eval

About

3D Bounding Box Estimation Using Deep Learning and Geometry (MultiBin)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 82.1%
  • MATLAB 17.1%
  • C++ 0.8%