Skip to content

Commit

Permalink
added NeMo curator
Browse files Browse the repository at this point in the history
  • Loading branch information
exactlyallan committed Jun 5, 2024
1 parent ee6eb31 commit 64b1981
Showing 1 changed file with 31 additions and 11 deletions.
42 changes: 31 additions & 11 deletions layouts/page/ecosystem.html
Original file line number Diff line number Diff line change
Expand Up @@ -390,19 +390,19 @@ <h2><i class="fa-regular fa-gauge-circle-bolt"></i> Triton </h2>
class="fa-solid fa-arrow-up-right"></i> </a>
</div>
<div class="col-md-6 py-3">
<h2><i class="fa-regular fa-gauge-circle-bolt"></i> Merlin </h2>
<h2><i class="fa-regular fa-gauge-circle-bolt"></i> NeMo Curator </h2>
<div class="tags-container border-top border-2 border-rapids-purple-primary">
<span class="tags-item text-rapids-purple-primary border-rapids-purple-primary"><i
class="fa-solid fa-tag"></i> RECOMMENDERS </span>
class="fa-solid fa-tag"></i> CURATION </span>
<span class="tags-item text-rapids-purple-primary border-rapids-purple-primary"><i
class="fa-solid fa-tag"></i> NVIDIA AI </span>
class="fa-solid fa-tag"></i> PYTHON </span>
<span class="tags-item text-rapids-purple-primary border-rapids-purple-primary"><i
class="fa-solid fa-tag"></i> NeMo</span>
</div>
<p> NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems. Merlin
leverages RAPIDS cuDF and Dask cuDF for dataframe transformation during ETL and inference, as well as for
the optimized dataloaders in TensorFlow, PyTorch or HugeCTR to accelerate deep learning training. </p>
<a href="https://github.com/NVIDIA-Merlin" target="_blank">GitHub <i class="fa-solid fa-arrow-up-right"></i>
<p> NeMo Curator is a Python library designed for scalable and efficient dataset preparation, enhancing LLM training accuracy through GPU-accelerated data curation using Dask and RAPIDS. It offers a customizable and modular interface that simplifies pipeline expansion and accelerates model convergence by preparing high-quality tokens. </p>
<a href="https://github.com/NVIDIA/NeMo-Curator" target="_blank">GitHub <i class="fa-solid fa-arrow-up-right"></i>
</a> <br>
<a href="https://developer.nvidia.com/nvidia-merlin" target="_blank">Learn More <i
<a href="https://docs.nvidia.com/nemo-framework/user-guide/latest/datacuration/index.html" target="_blank">Learn More <i
class="fa-solid fa-arrow-up-right"></i> </a>
</div>
</div>
Expand Down Expand Up @@ -470,6 +470,27 @@ <h2><i class="fa-regular fa-gauge-circle-bolt"></i> Monai </h2>
<a href="https://monai.io/" target="_blank">Project Page <i class="fa-solid fa-arrow-up-right"></i> </a>
</div>
</div>
<div class="row">
<div class="col-md-6 py-3">
<h2><i class="fa-regular fa-gauge-circle-bolt"></i> Merlin </h2>
<div class="tags-container border-top border-2 border-rapids-purple-primary">
<span class="tags-item text-rapids-purple-primary border-rapids-purple-primary"><i
class="fa-solid fa-tag"></i> RECOMMENDERS </span>
<span class="tags-item text-rapids-purple-primary border-rapids-purple-primary"><i
class="fa-solid fa-tag"></i> NVIDIA AI </span>
</div>
<p> NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems. Merlin
leverages RAPIDS cuDF and Dask cuDF for dataframe transformation during ETL and inference, as well as for
the optimized dataloaders in TensorFlow, PyTorch or HugeCTR to accelerate deep learning training. </p>
<a href="https://github.com/NVIDIA-Merlin" target="_blank">GitHub <i class="fa-solid fa-arrow-up-right"></i>
</a> <br>
<a href="https://developer.nvidia.com/nvidia-merlin" target="_blank">Learn More <i
class="fa-solid fa-arrow-up-right"></i> </a>
</div>
<div class="col-md-6 py-3">

</div>
</div>
</div>
</div>
</section>
Expand All @@ -496,8 +517,7 @@ <h2><i class="fa-regular fa-split"></i> Data Science Workflows </h2>
<div class="col-md-6 py-3">
<h2><i class="fa-regular fa-panel-fire"></i> MLOps Guides</h2>
<p>Deploy and maintain RAPIDS in production environments with these machine learning operations, hyper
parameter optimization, and integration guides on our <a
href="https://github.com/rapidsai/cloud-ml-examples" target="_blank">Cloud ML Examples Repository</a> and
parameter optimization, and integration guides on our
<a href="https://docs.rapids.ai/deployment/stable/" target="_blank">Deployments Page <i
class="fa-solid fa-arrow-up-right"></i></a> </p>
</div>
Expand Down Expand Up @@ -526,7 +546,7 @@ <h2><i class="fa-regular fa-chalkboard-user"></i> Maintainer Guides </h2>
target="_blank"> Maintainer Documentation Page <i class="fa-solid fa-arrow-up-right"></i> </a> </p>
</div>
<div class="col-md-6 py-3">
<h2><i class="fa-regular fa-code-pull-request"></i>Contribution Guides </h2>
<h2><i class="fa-regular fa-code-pull-request"></i> Contribution Guides </h2>
<p>Open source projects stay healthy with active contributions. Overall contribution guides can be found on
our <a href="https://docs.rapids.ai/contributing" target="_blank">Documentation</a>. Each RAPIDS repository
also has helpful and
Expand Down

0 comments on commit 64b1981

Please sign in to comment.