Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DNM][EXP] Add experimental LocalHybridCluster #1398

Draft
wants to merge 4 commits into
base: branch-24.12
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added dask_cuda/hybrid/__init__.py
Empty file.
163 changes: 163 additions & 0 deletions dask_cuda/hybrid/cluster.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
from __future__ import annotations

import copy
from collections.abc import Sequence

import psutil

import dask.dataframe as dd
from dask import config
from dask.tokenize import tokenize
from distributed import get_client
from distributed.diagnostics.plugin import SchedulerPlugin
from distributed.scheduler import Scheduler, TaskState

from dask_cuda import LocalCUDACluster


class GPURestrictorPlugin(SchedulerPlugin):
"""Scheduler Plugin to restrict tasks to a 'gpu' resource

TODO: Move to `plugins` module.

The plugin will restrict all tasks to "gpu" resources
unless those tasks start with a name that is included
in `_free_task_names`.
"""

scheduler: Scheduler
_free_task_names: Sequence[str]

def __init__(self, scheduler: Scheduler):
self.scheduler = scheduler
self.scheduler.stream_handlers.update(
{"add_free_task_names": self.add_free_task_names}
)
self.scheduler.add_plugin(self, name="gpu_restrictor")
self._free_task_names = set()

def add_free_task_names(self, *args, **kwargs) -> None:
key_names = kwargs.pop("key_names", ())
for k in key_names:
self._free_task_names.add(k)

def update_graph(self, *args, **kwargs) -> None:
tasks = kwargs.pop("tasks", [])
for key in tasks:
ts: TaskState = self.scheduler.tasks[key]
if isinstance(key, tuple) and key and key[0] in self._free_task_names:
continue # This is a "free" task
else:
ts.resource_restrictions = {"gpu": 1}


def _no_op(x):
return x


def _combine(dfs: list):
import pandas as pd

import cudf

return cudf.from_pandas(pd.concat(dfs))


class LocalHybridCluster(LocalCUDACluster):
def __init__(
self,
n_workers=None,
n_gpu_workers=None,
n_cpu_workers=None,
resources=None,
**kwargs,
):
if resources is not None:
raise ValueError("resources is not a supported by LocalHybridCluster.")

preloads = config.get("distributed.scheduler.preload")
preloads.append("dask_cuda.hybrid.cluster")
config.set({"distributed.scheduler.preload": preloads})

if n_workers is not None:
raise ValueError(
f"Got n_workers={n_workers}. "
"Please use n_gpu_workers and n_cpu_workers only."
)

super().__init__(
n_workers=n_gpu_workers,
resources={"gpu": 1},
**kwargs,
)

if n_cpu_workers is None:
# By default, add an extra CPU worker for every physical core
n_cpu_workers = psutil.cpu_count(logical=False)

if n_cpu_workers > 0:
# Add cpu workers
self.scale(n_cpu_workers + len(self.worker_spec))

def new_worker_spec(self):
try:
# Add GPU workers until we have a worker
# for every visible cuda device
name = min(set(self.cuda_visible_devices) - set(self.worker_spec))
except Exception:
# Add a cpu-only worker
name = max(self.worker_spec) + 1
spec = copy.deepcopy(self.new_spec)
spec["options"].update({"resources": {"cpu": 1}})
# TODO: Make the CPU worker threaded?
return {name: spec}
return super().new_worker_spec()

def read_parquet(self, *args, agg_factor=1, **kwargs):
# TODO: Implement custom/optimized logic
# (Avoid unnecessary pa.Table->pd.Dataframe)
# TODO: Enable column projection, etc?
assert dd.DASK_EXPR_ENABLED

# Need a client to send "free" keys to the scheduler
client = get_client()

# Use arrow/pandas for IO
with config.set({"dataframe.backend": "pandas"}):
df0 = dd.read_parquet(*args, **kwargs)

# "Hack" to enable small-file aggregation
df0 = df0.map_partitions(
_no_op,
meta=df0._meta,
enforce_metadata=False,
).optimize()

# Let the scheduler know that these "IO"
# tasks are free to run anywhere
client._send_to_scheduler(
{
"op": "add_free_task_names",
"key_names": [df0._name],
}
)

# Use from_graph to make sure IO tasks don't change
token = tokenize(df0, agg_factor)
name = f"cpu-to-gpu-{token}"
io_keys = [(df0._name, i) for i in range(df0.npartitions)]
dsk = {
(name, i): (_combine, io_keys[i : i + agg_factor])
for i in range(0, len(io_keys), agg_factor)
}
output_keys = list(dsk.keys())
dsk.update(df0.dask)
meta = _combine([df0._meta])
divisions = (None,) * (len(output_keys) + 1)
name_prefix = "pq"
df0 = dd.from_graph(dsk, meta, divisions, output_keys, name_prefix)
return df0


def dask_setup(scheduler):
GPURestrictorPlugin(scheduler)
Loading