ONNX Runtime C++ inference example for image classification using CPU and CUDA.
- CMake 3.20.1
- ONNX Runtime 1.18.0
- OpenCV 4.9.0
$ cmake -B build
$ cmake --build build --config Release --parallel
$ cd build/src/
# ./inference
././inference <onnxModelFilePath> <imgFilePath> <labelFilePath>
# ./inference /ranjit/ONNX-Runtime-Inference-main/model/resnet152-v2-7.onnx /ranjit/ONNX-Runtime-Inference-main/data/images/european-bee-eater-2115564_1920.jpg /ranjit/ONNX-Runtime-Inference-main/data/labels/synset.txt
Model Loading time:1956
Got dynamic batch size. Setting input batch size to 1.
Got dynamic batch size. Setting output batch size to 1.
Number of Input Nodes: 1
Number of Output Nodes: 1
Input Name: data
Input Type: float
Input Dimensions: [1, 3, 224, 224]
Output Name: resnetv27_dense0_fwd
Output Type: float
Output Dimensions: [1, 1000]
Predicted Label ID: 92
Predicted Label: n01828970 bee eater
Uncalibrated Confidence: 0.99903
Minimum Inference Latency: 929.13 ms