Skip to content

Commit

Permalink
Merge pull request #29 from r-world-devs/v0.2.0
Browse files Browse the repository at this point in the history
v0.2.0 release
  • Loading branch information
krystian8207 authored Mar 1, 2023
2 parents 82a402e + f11d247 commit 8b08961
Show file tree
Hide file tree
Showing 7 changed files with 105 additions and 54 deletions.
6 changes: 3 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: cohortBuilder
Type: Package
Title: Data Source Agnostic Filtering Tools
Version: 0.1.2.9000
Version: 0.2.0
Authors@R:
c(person('Krystian', 'Igras',
email = '[email protected]',
Expand All @@ -16,14 +16,14 @@ License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Imports:
yaml,
R6,
jsonlite,
purrr,
tibble,
dplyr (>= 1.0.0),
tidyr,
magrittr,
glue,
R6,
ggplot2,
rlang (>= 1.0),
formatR
Expand Down
6 changes: 2 additions & 4 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,11 @@
# cohortBuilder (development version)
# cohortBuilder 0.2.0

* Changed the way reproducible code is returned. Now more flexibility is allowed with using e.g. `.repro_code_tweak` method.
* The `tblist` source reproducible code is now using pipe chains for each dataset filtering.
* Optimized filtering with having cache computed only for active filters.
* Properly readjust steps and filters ids after step is removed.

# cohortBuilder 0.1.1

* Add `.post_binding` method, that allows to modify data object when binding is completed.
* Fix reproducible code generation when no filters applied.

# cohortBuilder 0.1

Expand Down
10 changes: 8 additions & 2 deletions R/cohortBuilder-package.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,21 @@
#' @name cohortBuilder-package
#' @importFrom magrittr %>%
#' @importFrom dplyr sym
NULL

globalVariables(c(
":=", "!!", ".data",
"arrow_end_position_y", "excl_end_position_x", "excl_position_x",
"excl_position_y", "label", "label_excl",
"label_heights", "label_position_x", "label_position_y", "level"
"label_heights", "label_position_x", "label_position_y", "level",
"dataset", "type", "expr", "new_expr", "expr1", "!<-", "x"
))

NULL
force_import <- function() {
R6::R6Class
formatR::tidy_source
jsonlite::toJSON
}

`%:::%` <- function(pkg, name) {
pkg <- as.character(substitute(pkg))
Expand Down
86 changes: 60 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@

# cohortBuilder <img src="man/figures/logo.png" align="right" width="120" />

[![version](https://img.shields.io/static/v1.svg?label=github.com&message=v.0.1.1&color=ff69b4)](https://r-world-devs.github.io/cohortBuilder/)
[![version](https://img.shields.io/static/v1.svg?label=github.com&message=v.0.2.0&color=ff69b4)](https://r-world-devs.github.io/cohortBuilder/)
[![lifecycle](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental)

## Overview
Expand All @@ -17,24 +17,24 @@ With only two steps:

You can operate on data using common methods, such as:

- `filter` - to define and `run` to apply filtering rules,
- `step` - to perform multi-stage filtering,
- `get_data`, `stat`, `attrition`, `plot_data` - to extract, sum up or
visualize your cohort data.
- `filter` - to define and `run` to apply filtering rules,
- `step` - to perform multi-stage filtering,
- `get_data`, `stat`, `attrition`, `plot_data` - to extract, sum up or
visualize your cohort data.

With `cohortBuilder` you can share the cohort easier with useful
methods:

- `code` - to get reproducible cohort creation code,
- `get_state` - to get cohort state (e.g. in JSON) that can be then
easily restored with `restore`.
- `code` - to get reproducible cohort creation code,
- `get_state` - to get cohort state (e.g. in JSON) that can be then
easily restored with `restore`.

Or modify the cohort configuration with:

- `add_filter`, `rm_filter`, `update_filter` - to manage filters
definition
- `add_step`, `rm_step` - to manage filtering steps,
- `update_source` - to manage the cohort source.
- `add_filter`, `rm_filter`, `update_filter` - to manage filters
definition
- `add_step`, `rm_step` - to manage filtering steps,
- `update_source` - to manage the cohort source.

## Data sources and extensions

Expand Down Expand Up @@ -354,24 +354,58 @@ code(coh)
#> }
#> return(data_object)
#> }
#> .run_binding <- function(source, binding_key, data_object_pre, data_object_post,
#> ...) {
#> binding_dataset <- binding_key$update$dataset
#> dependent_datasets <- names(binding_key$data_keys)
#> active_datasets <- data_object_post %>%
#> purrr::keep(~attr(., "filtered")) %>%
#> names()
#> if (!any(dependent_datasets %in% active_datasets)) {
#> return(data_object_post)
#> }
#> key_values <- NULL
#> common_key_names <- paste0("key_", seq_along(binding_key$data_keys[[1]]$key))
#> for (dependent_dataset in dependent_datasets) {
#> key_names <- binding_key$data_keys[[dependent_dataset]]$key
#> tmp_key_values <- dplyr::distinct(data_object_post[[dependent_dataset]][,
#> key_names, drop = FALSE]) %>%
#> stats::setNames(common_key_names)
#> if (is.null(key_values)) {
#> key_values <- tmp_key_values
#> } else {
#> key_values <- dplyr::inner_join(key_values, tmp_key_values, by = common_key_names)
#> }
#> }
#> data_object_post[[binding_dataset]] <- dplyr::inner_join(switch(as.character(binding_key$post),
#> `FALSE` = data_object_pre[[binding_dataset]], `TRUE` = data_object_post[[binding_dataset]]),
#> key_values, by = stats::setNames(common_key_names, binding_key$update$key))
#> if (binding_key$activate) {
#> attr(data_object_post[[binding_dataset]], "filtered") <- TRUE
#> }
#> return(data_object_post)
#> }
#> source <- list(dtconn = as.tblist(librarian))
#> data_object <- source$dtconn
#> # step 1
#> step_id <- "1"
#> data_object <- .pre_filtering(source, data_object, step_id)
#> pre_data_object <- data_object
#> data_object <- .pre_filtering(source, data_object, "1")
#> data_object[["books"]] <- data_object[["books"]] %>%
#> dplyr::filter(author %in% c("Dan Brown", NA))
#> attr(data_object[["books"]], "filtered") <- TRUE
#> data_object[["borrowers"]] <- data_object[["borrowers"]] %>%
#> dplyr::filter((registered <= Inf & registered >= 14610) | is.na(registered))
#> attr(data_object[["borrowers"]], "filtered") <- TRUE
#> # step 2
#> data_object <- .post_filtering(source, data_object, "1")
#> for (binding_key in binding_keys) {
#> data_object <- .run_binding(source, binding_key, pre_data_object, data_object)
#> }
#> step_id <- "2"
#> data_object <- .pre_filtering(source, data_object, step_id)
#> data_object <- .pre_filtering(source, data_object, "2")
#> data_object[["books"]] <- data_object[["books"]] %>%
#> dplyr::filter((copies <= 10 & copies >= 5) | is.na(copies))
#> attr(data_object[["books"]], "filtered") <- TRUE
#> data_object
#> data_object <- .post_filtering(source, data_object, "2")
```

``` r
Expand All @@ -382,21 +416,21 @@ attrition(coh, dataset = "books")

``` r
get_state(coh, json = TRUE)
#> [{"step":"1","filters":[{"range":[5,6],"type":"discrete","id":"author","name":"author","variable":"author","value":"Dan Brown","dataset":"books","keep_na":true,"description":null,"active":true},{"type":"date_range","id":"registered","name":"registered","variable":"registered","range":["2010-01-01","NA"],"dataset":"borrowers","keep_na":true,"description":null,"active":true}]},{"step":"2","filters":[{"type":"range","id":"copies","name":"copies","variable":"copies","range":[5,10],"dataset":"books","keep_na":true,"description":null,"active":true}]}]
#> [{"step":"1","filters":[{"range":[5,6],"type":"discrete","id":"author","name":"author","variable":"author","value":"Dan Brown","dataset":"books","keep_na":true,"description":null,"active":true},{"type":"date_range","id":"registered","name":"registered","variable":"registered","range":["2010-01-01","Inf"],"dataset":"borrowers","keep_na":true,"description":null,"active":true}]},{"step":"2","filters":[{"type":"range","id":"copies","name":"copies","variable":"copies","range":[5,10],"dataset":"books","keep_na":true,"description":null,"active":true}]}]
```

## Acknowledgement

Special thanks to:

- [Kamil Wais](mailto:[email protected]) for highlighting the need
for the package and its relevance to real-world applications.
- [Adam Foryś](mailto:[email protected]) for technical support,
numerous suggestions for the current and future implementation of
the package.
- [Paweł Kawski](mailto:[email protected]) for indication of
initial assumptions about the package based on real-world medical
data.
- [Kamil Wais](mailto:[email protected]) for highlighting the need
for the package and its relevance to real-world applications.
- [Adam Foryś](mailto:[email protected]) for technical support,
numerous suggestions for the current and future implementation of the
package.
- [Paweł Kawski](mailto:[email protected]) for indication of
initial assumptions about the package based on real-world medical
data.

## Getting help

Expand Down
18 changes: 9 additions & 9 deletions cran-comments.md
Original file line number Diff line number Diff line change
@@ -1,16 +1,16 @@
## Test environments
* local check
Ubuntu 18.04.6 LTS, R 4.1.2 (2021-11-01)
Ubuntu 20.04.5 LTS, R 4.1.2 (2021-11-01)
* win-builder
R version 4.1.3 (2022-03-10)
R version 4.2.1 (2022-06-23 ucrt)
R Under development (unstable) (2022-07-26 r82626 ucrt)
R version 4.2.2 (2022-10-31 ucrt)
R Under development (unstable) (2023-02-27 r83911 ucrt)

## `R CMD check cohortBuilder_0.1.1.tar.gz --as-cran` results
## `R CMD check cohortBuilder_0.2.0.tar.gz --as-cran` results

```
* using log directory ‘/home/krystian/Projects/Packages/cohortBuilder.Rcheck’
* using R version 4.1.2 (2021-11-01)
* using log directory ‘/home/krystian/projects/cohortBuilder.Rcheck’
* using R version 4.2.1 (2022-06-23)
* using platform: x86_64-pc-linux-gnu (64-bit)
...
Status: OK
Expand Down Expand Up @@ -38,7 +38,7 @@ Status: OK

```
* using log directory 'd:/RCompile/CRANguest/R-release/cohortBuilder.Rcheck'
* using R version 4.2.1 (2022-06-23 ucrt)
* using R version 4.2.2 (2022-10-31 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
...
* checking CRAN incoming feasibility ... Note_to_CRAN_maintainers
Expand All @@ -49,10 +49,10 @@ Status: OK

```
* using log directory 'd:/RCompile/CRANguest/R-devel/cohortBuilder.Rcheck'
* using R Under development (unstable) (2022-07-26 r82626 ucrt)
* using R Under development (unstable) (2023-02-27 r83911 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
...
* checking CRAN incoming feasibility ... Note_to_CRAN_maintainers
* checking CRAN incoming feasibility ... [10s] Note_to_CRAN_maintainers
Maintainer: 'Krystian Igras <[email protected]>'
...
Status: OK
Expand Down
14 changes: 11 additions & 3 deletions vignettes/cohortBuilder.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -374,14 +374,15 @@ specific source (i.e. `dplyr` for `tblist` and `dbplyr` for `db` source):
code(librarian_cohort)
```

We can see above, the resulting code uses `source` object, which creation can be
We can see above, the resulting code uses `source` object, which creation code can be
defined separately while creating it:

```{r}
librarian_source <- set_source(
as.tblist(librarian),
source_code = quote({
source <- list(attributes = list(datasets = librarian))
source <- list()
source$dtconn <- as.tblist(librarian)
})
)
Expand Down Expand Up @@ -409,7 +410,14 @@ librarian_cohort <- librarian_source %>%
code(librarian_cohort)
```

The second option allows to restore cohort configuration using its state.
What's more, you can manipulate the output with additional arguments:

- `include_methods` - list of methods names which definition should be printed in output,
- `include_action` - list of actions names (such as "pre_filtering") that should be included in output,
- `modifier` - a custom modifier of data.frame storing reproducible code parts,
- `mark_step` - should step ID be presented in output.

The second option for achieving reproducibility allows to restore cohort configuration using its state.
The cohort state is a list (or json) storing information about all the steps and filters configuration.

You may get the state with `get_state` method:
Expand Down
19 changes: 12 additions & 7 deletions vignettes/managing-cohort.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -148,21 +148,23 @@ See `vignette("cohort-configuration")`.
The last Cohort configuration component - source, can be also managed within the Cohort itself.
With `update_source` method you can change the source defined in the existing Cohort.

Below we update cohort with Source having `source_code` parameter defined:
Below we update cohort with Source having `source_code` parameter defined.
The argument is responsible to generate `source` object definition printed in the reproducible code (you can use it when the default method doesn't print reasonable output).

```{r}
code(librarian_cohort)
code(librarian_cohort, include_methods = NULL)
new_source <- set_source(
as.tblist(librarian),
source_code = quote({
source <- list(attributes = list(datasets = librarian))
source <- list()
source$dtconn <- as.tblist(librarian)
})
)
update_source(librarian_cohort, new_source)
code(librarian_cohort)
sum_up(librarian_cohort)
code(librarian_cohort)
code(librarian_cohort, include_methods = NULL)
```

Note that updating source doesn't remove Cohort configuration (steps and filters).
Expand All @@ -176,9 +178,12 @@ sum_up(librarian_cohort)
You can also use `update_source` to add Source to an empty Cohort:

```{r}
new_source <- set_source(
as.tblist(librarian)
)
empty_cohort <- cohort()
update_source(librarian_cohort, new_source)
sum_up(empty_cohort)
update_source(empty_cohort, new_source)
code(empty_cohort, include_methods = NULL)
```

The `update_source` method can be also useful if you want to update source along with steps and filters configuration.
Expand Down

0 comments on commit 8b08961

Please sign in to comment.