Skip to content

Commit

Permalink
the most effective version of contours dilation without opencv and al…
Browse files Browse the repository at this point in the history
…l at once
  • Loading branch information
vahidrezanezhad committed Sep 19, 2024
1 parent a1f1f98 commit 5a07cd9
Showing 1 changed file with 97 additions and 161 deletions.
258 changes: 97 additions & 161 deletions qurator/eynollah/eynollah.py
Original file line number Diff line number Diff line change
Expand Up @@ -1964,7 +1964,7 @@ def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier, skip_lay
#print(num_col_classifier,'num_col_classifier')

if num_col_classifier == 1:
img_w_new = 900#1000
img_w_new = 800#1000
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)

elif num_col_classifier == 2:
Expand Down Expand Up @@ -3818,196 +3818,132 @@ def return_textline_contour_with_added_box_coordinate(self, textline_contour, b
def return_list_of_contours_with_desired_order(self, ls_cons, sorted_indexes):
return [ls_cons[sorted_indexes[index]] for index in range(len(sorted_indexes))]

def scale_contours(self,all_found_textline_polygons):
def dilate_textlines(self,all_found_textline_polygons):
for i in range(len(all_found_textline_polygons[0])):
con_ind = all_found_textline_polygons[0][i]

con_ind = con_ind.astype(np.float)

x_differential = np.diff( con_ind[:,0,0])
y_differential = np.diff( con_ind[:,0,1])


m_arr = y_differential / x_differential

#print(x_differential, 'x_differential')

#print(y_differential, 'y_differential')

#print(m_arr)

x_min = float(np.min( con_ind[:,0,0] ))
y_min = float(np.min( con_ind[:,0,1] ))

x_max = float(np.max( con_ind[:,0,0] ))
y_max = float(np.max( con_ind[:,0,1] ))


x_mean = float(np.mean( con_ind[:,0,0] ))
y_mean = float(np.mean( con_ind[:,0,1] ))

arg_y_max = np.argmax( con_ind[:,0,1] )
arg_y_min = np.argmin( con_ind[:,0,1] )


arg_x_max = np.argmax( con_ind[:,0,0] )
arg_x_min = np.argmin( con_ind[:,0,0] )

x_cor_y_max = float(con_ind[arg_y_max,0,0])
x_cor_y_min = float(con_ind[arg_y_min,0,0])


y_cor_x_max = float(con_ind[arg_x_max,0,1])
y_cor_x_min = float(con_ind[arg_x_min,0,1])

if (x_cor_y_max - x_cor_y_min) != 0:
m_con = (y_max - y_min) / (x_cor_y_max - x_cor_y_min)
else:
m_con= None


m_con_x = (x_max - x_min) / (y_cor_x_max - y_cor_x_min)
#print(m_con,m_con_x, 'm_con')
con_scaled = con_ind*1

con_scaled = con_scaled.astype(np.float)

con_scaled[:,0,0] = con_scaled[:,0,0] - int(x_mean)
con_scaled[:,0,1] = con_scaled[:,0,1] - int(y_mean)

if (x_max - x_min) > (y_max - y_min):

if (y_max-y_min)<=15:
con_scaled[:,0,1] = con_ind[:,0,1]*1.8

y_max_scaled = np.max(con_scaled[:,0,1])
y_min_scaled = np.min(con_scaled[:,0,1])
if (y_max - y_min) > (x_max - x_min) and (x_max - x_min)<70:

x_biger_than_x = np.abs(x_differential) > np.abs(y_differential)

mult = x_biger_than_x*x_differential

arg_min_mult = np.argmin(mult)
arg_max_mult = np.argmax(mult)

if y_differential[0]==0:
y_differential[0] = 0.1

if y_differential[-1]==0:
y_differential[-1]= 0.1

y_max_expected = ( m_con*1.8*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
elif (y_max-y_min)<=30 and (y_max-y_min)>15:
con_scaled[:,0,1] = con_ind[:,0,1]*1.6
y_max_scaled = np.max(con_scaled[:,0,1])
y_min_scaled = np.min(con_scaled[:,0,1])

y_max_expected = ( m_con*1.6*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
elif (y_max-y_min)>30 and (y_max-y_min)<100:
con_scaled[:,0,1] = con_ind[:,0,1]*1.35
y_max_scaled = np.max(con_scaled[:,0,1])
y_min_scaled = np.min(con_scaled[:,0,1])

y_max_expected = ( m_con*1.35*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
else:
con_scaled[:,0,1] = con_ind[:,0,1]*1.2
y_max_scaled = np.max(con_scaled[:,0,1])
y_min_scaled = np.min(con_scaled[:,0,1])

y_max_expected = ( m_con*1.2*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
con_scaled[:,0,0] = con_ind[:,0,0]*1.03
y_differential = [y_differential[ind] if y_differential[ind]!=0 else (y_differential[ind-1] + y_differential[ind+1])/2. for ind in range(len(y_differential)) ]



#print(m_con, (x_cor_y_max-x_cor_y_min),y_min_scaled, y_max_expected, y_max_scaled, "y_max_scaled")
if y_max_expected<=y_max_scaled:
con_scaled[:,0,1] = con_scaled[:,0,1] - y_min_scaled
if y_differential[0]==0.1:
y_differential[0] = y_differential[1]
if y_differential[-1]==0.1:
y_differential[-1] = y_differential[-2]

con_scaled[:,0,1] = con_scaled[:,0,1]*(y_max_expected - y_min_scaled)/ (y_max_scaled - y_min_scaled)
con_scaled[:,0,1] = con_scaled[:,0,1] + y_min_scaled
y_differential.append(y_differential[0])

y_differential = [-1 if y_differential[ind]<0 else 1 for ind in range(len(y_differential))]

y_differential = np.array(y_differential)


con_scaled = con_ind*1

con_scaled[:,0, 0] = con_ind[:,0,0] - 8*y_differential

con_scaled[arg_min_mult,0, 1] = con_ind[arg_min_mult,0,1] + 8
con_scaled[arg_min_mult+1,0, 1] = con_ind[arg_min_mult+1,0,1] + 8

try:
con_scaled[arg_min_mult-1,0, 1] = con_ind[arg_min_mult-1,0,1] + 5
con_scaled[arg_min_mult+2,0, 1] = con_ind[arg_min_mult+2,0,1] + 5
except:
pass

con_scaled[arg_max_mult,0, 1] = con_ind[arg_max_mult,0,1] - 8
con_scaled[arg_max_mult+1,0, 1] = con_ind[arg_max_mult+1,0,1] - 8

try:
con_scaled[arg_max_mult-1,0, 1] = con_ind[arg_max_mult-1,0,1] - 5
con_scaled[arg_max_mult+2,0, 1] = con_ind[arg_max_mult+2,0,1] - 5
except:
pass


else:
#print(x_max-x_min, m_con_x,'m_con_x')
if (x_max-x_min)<=15:
con_scaled[:,0,0] = con_ind[:,0,0]*1.8

x_max_scaled = np.max(con_scaled[:,0,0])
x_min_scaled = np.min(con_scaled[:,0,0])

x_max_expected = ( m_con_x*1.8*(y_cor_x_max-y_cor_x_min) + x_min_scaled )

elif (x_max-x_min)<=30 and (x_max-x_min)>15:
con_scaled[:,0,0] = con_ind[:,0,0]*1.6

x_max_scaled = np.max(con_scaled[:,0,0])
x_min_scaled = np.min(con_scaled[:,0,0])

x_max_expected = ( m_con_x*1.6*(y_cor_x_max-y_cor_x_min) + x_min_scaled )

elif (x_max-x_min)>30 and (x_max-x_min)<100:
con_scaled[:,0,0] = con_ind[:,0,0]*1.35

x_max_scaled = np.max(con_scaled[:,0,0])
x_min_scaled = np.min(con_scaled[:,0,0])

x_max_expected = ( m_con_x*1.35*(y_cor_x_max-y_cor_x_min) + x_min_scaled )

else:
con_scaled[:,0,0] = con_ind[:,0,0]*1.2

y_biger_than_x = np.abs(y_differential) > np.abs(x_differential)

mult = y_biger_than_x*y_differential

arg_min_mult = np.argmin(mult)
arg_max_mult = np.argmax(mult)

if x_differential[0]==0:
x_differential[0] = 0.1

if x_differential[-1]==0:
x_differential[-1]= 0.1

x_max_scaled = np.max(con_scaled[:,0,0])
x_min_scaled = np.min(con_scaled[:,0,0])

x_max_expected = ( m_con_x*1.2*(y_cor_x_max-y_cor_x_min) + x_min_scaled )

con_scaled[:,0,1] = con_ind[:,0,1]*1.03
x_differential = [x_differential[ind] if x_differential[ind]!=0 else (x_differential[ind-1] + x_differential[ind+1])/2. for ind in range(len(x_differential)) ]

#print(x_max_expected, x_max_scaled, "x_max_scaled")
if x_max_expected<=x_max_scaled:
con_scaled[:,0,0] = con_scaled[:,0,0] - x_min_scaled

if x_differential[0]==0.1:
x_differential[0] = x_differential[1]
if x_differential[-1]==0.1:
x_differential[-1] = x_differential[-2]

con_scaled[:,0,0] = con_scaled[:,0,0]*(x_max_expected - x_min_scaled)/ (x_max_scaled - x_min_scaled)
con_scaled[:,0,0] = con_scaled[:,0,0] + x_min_scaled
x_differential.append(x_differential[0])

x_differential = [-1 if x_differential[ind]<0 else 1 for ind in range(len(x_differential))]

x_differential = np.array(x_differential)

con_scaled = con_ind*1

con_scaled[:,0, 1] = con_ind[:,0,1] + 8*x_differential

con_scaled[arg_min_mult,0, 0] = con_ind[arg_min_mult,0,0] + 8
con_scaled[arg_min_mult+1,0, 0] = con_ind[arg_min_mult+1,0,0] + 8

con_scaled[arg_min_mult-1,0, 0] = con_ind[arg_min_mult-1,0,0] + 5
con_scaled[arg_min_mult+2,0, 0] = con_ind[arg_min_mult+2,0,0] + 5

con_scaled[arg_max_mult,0, 0] = con_ind[arg_max_mult,0,0] - 8
con_scaled[arg_max_mult+1,0, 0] = con_ind[arg_max_mult+1,0,0] - 8

con_scaled[arg_max_mult-1,0, 0] = con_ind[arg_max_mult-1,0,0] - 5
con_scaled[arg_max_mult+2,0, 0] = con_ind[arg_max_mult+2,0,0] - 5


x_min_n = np.min( con_scaled[:,0,0] )
y_min_n = np.min( con_scaled[:,0,1] )

x_mean_n = np.mean( con_scaled[:,0,0] )
y_mean_n = np.mean( con_scaled[:,0,1] )

##diff_x = (x_min_n - x_min)*1
##diff_y = (y_min_n - y_min)*1

diff_x = (x_mean_n - x_mean)*1
diff_y = (y_mean_n - y_mean)*1


con_scaled[:,0,0] = (con_scaled[:,0,0] - diff_x)
con_scaled[:,0,1] = (con_scaled[:,0,1] - diff_y)

x_max_n = np.max( con_scaled[:,0,0] )
y_max_n = np.max( con_scaled[:,0,1] )

diff_disp_x = (x_max_n - x_max) / 2.
diff_disp_y = (y_max_n - y_max) / 2.

x_vals = np.array( np.abs(con_scaled[:,0,0] - diff_disp_x) ).astype(np.int16)
y_vals = np.array( np.abs(con_scaled[:,0,1] - diff_disp_y) ).astype(np.int16)
all_found_textline_polygons[0][i][:,0,0] = x_vals[:]
all_found_textline_polygons[0][i][:,0,1] = y_vals[:]
return all_found_textline_polygons

def scale_contours_new(self, textline_mask_tot_ea):

cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea)
all_found_textline_polygons1 = filter_contours_area_of_image(textline_mask_tot_ea, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001)


textline_mask_tot_ea_res = resize_image(textline_mask_tot_ea, int( textline_mask_tot_ea.shape[0]*1.6), textline_mask_tot_ea.shape[1])
cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea_res)
##all_found_textline_polygons = filter_contours_area_of_image(textline_mask_tot_ea_res, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001)
all_found_textline_polygons = filter_contours_area_of_image(textline_mask_tot_ea_res, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001)

for i in range(len(all_found_textline_polygons)):

#x_mean_1 = np.mean( all_found_textline_polygons1[i][:,0,0] )
y_mean_1 = np.mean( all_found_textline_polygons1[i][:,0,1] )

#x_mean = np.mean( all_found_textline_polygons[i][:,0,0] )
y_mean = np.mean( all_found_textline_polygons[i][:,0,1] )
con_scaled[:,0, 1][con_scaled[:,0, 1]<0] = 0
con_scaled[:,0, 0][con_scaled[:,0, 0]<0] = 0

ydiff = y_mean - y_mean_1
all_found_textline_polygons[0][i][:,0,1] = con_scaled[:,0, 1]
all_found_textline_polygons[0][i][:,0,0] = con_scaled[:,0, 0]

all_found_textline_polygons[i][:,0,1] = all_found_textline_polygons[i][:,0,1] - ydiff
return all_found_textline_polygons


def run(self):
"""
Get image and scales, then extract the page of scanned image
Expand Down Expand Up @@ -4432,7 +4368,7 @@ def run(self):

all_found_textline_polygons=[ all_found_textline_polygons ]

all_found_textline_polygons = self.scale_contours(all_found_textline_polygons)
all_found_textline_polygons = self.dilate_textlines(all_found_textline_polygons)


order_text_new = [0]
Expand Down

0 comments on commit 5a07cd9

Please sign in to comment.