$$ ax^3 + bx^2 + cx + d = 0 $$
$$ => \frac{ax^3 + bx^2 + cx + d}a = \frac{0}{a} $$
$$ => \frac{a}{a}x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0 $$
$$ => x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0 $$
令 $\frac{b}{a} = b', \frac{c}{a} = c', \frac{d}{a} = d' $ , 代入到上面的等式:
$$ => x^3 + b'x^2 + c'x + d' = 0 $$
令 $x = z - \frac{b'}{3} $ , 代入到上面的等式:
$$ => (z-\frac{b'}{3})^3 + b'(z-\frac{b'}{3})^2 + c'(z-\frac{b'}{3}) + d' = 0 $$
$$ => (z^3-b'z^2+\frac{(b')^2}{3}z-\frac{(b')^3}{27})+(b'z^2-\frac{2(b')^2}{3})z+\frac{(b')^3}{9}+(c'z-\frac{b'c'}{3})+d'=0 $$
$$ => z^3-(\frac{(b')^2}{3}-c')z+\frac{(b')^3}{27}-\frac{b'c'}{3}+d'=0 $$
$$ => z^3 - (\frac{(\frac{b}{a})^2}{3}-\frac{c}{a})z + \frac{\frac{2b^3}{a^3}}{27} - \frac{\frac{bc}{a^2}}{3} + \frac{d}{a} = 0 $$
$$ => z^3 + \frac{3ac-b^2}{3a^2} + \frac{2b^3+27a^2d-9abc}{27a^3} = 0 $$
令 $\frac{3ac-b^2}{3a^2}=p, \frac{2b^3+27a^2d-9abc}{27a^3}=q $ , 代入到上面的等式:
$$ => z^3 + pz + q = 0 $$
$$ (u+v)^3=u^3+3u^2v+3uv^2+v^3=u^3+v^3+3uv(u+v)
=> (u+v)^3 - 3uv(u+v) - (u^3+v^3) = 0 $$
$$
\left\{
\begin{array}{c}
z = u+v\\\
p = -3uv\\\
q = -(u^3+v^3)\\\
\end{array}
\right.
$$
又因为: $(u^3-v^3)^2 = u^6+v^6-2u^3v^3 = u^6+v^6+2u^3v^3-4u^3v^3 =(u^3+v^3)^2-4u^3v^3$
$$ => (u^3-v^3)^2 = (u^3+v^3)^2-4u^3v^3 $$
$$ => (u^3-v^3)^2 = (-q)^2-4(uv)^3 $$
$$ => (u^3-v^3)^2 = (-q)^2-4(\frac{p}{3})^3 $$
$$ => (u^3-v^3)^2 = (-q)^2-\frac{4p^3}{27} $$
$$ => u^3-v^3 = ±\sqrt{(-q)^2-\frac{4p^3}{27}} $$
$$
\left\{
\begin{array}{c}
u^3-v^3 = ±\sqrt{(-q)^2-\frac{4p^3}{27}}\\\
u^3+v^3 = -q\\\
\end{array}
\right.
$$
$$
\left\{
\begin{array}{c}
u^3 = -\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}\\\
v^3 = -\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}\\\
\end{array}
\right.
$$
$$
\left\{
\begin{array}{c}
u = \sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}\\\
v = \sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}\\\
\end{array}
\right.
$$
$$ => z=u+v=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}} $$
单机右方的Python Online Compiler ,稍后在浏览器里会显示python的运行环境。
把下面的这段python代码拷贝到这个页面“Run Code”下侧的深蓝色的空白栏中, 然后单击上方的按键“Run Code”。
y = 2x3 - 3 x2 - 3x + 2 的轮廓与x轴的交点就是y = 2 x3 的轮廓和y = 3x2 + 3 x - 2的轮廓的交点
import numpy as np
import matplotlib .pyplot as plt
# plt.gca().set_aspect( 1 )
x = np .linspace (- 2 ,3 ,59 ) # print(x)
y = 2 * x ** 3 - 3 * x ** 2 - 3 * x + 2 # print(y)
plt .scatter (x ,y )
# y = 2*x**3
# plt.scatter(x,y)
# y = 3*x**2 + 3*x - 2
# plt.scatter(x,y)
y = x * 0
plt .scatter (x ,y )
plt .show ()
维基百科