Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update link to Informer paper #2

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ For general **Recent AI Advances: Tutorials and Surveys in various areas (DL, ML
* TACTiS: Transformer-Attentional Copulas for Time Series, in *ICML* 2022. [\[paper\]](https://arxiv.org/abs/2202.03528)
* Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting, in *ICLR* 2022. [\[paper\]](https://openreview.net/forum?id=0EXmFzUn5I) [\[official code\]](https://github.com/alipay/Pyraformer)
* Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting, in *NeurIPS* 2021. [\[paper\]](https://proceedings.neurips.cc/paper/2021/hash/bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html) [\[official code\]](https://github.com/thuml/autoformer)
* Informer: Beyond efficient transformer for long sequence time-series forecasting, in *AAAI* 2021. [\[paper\]](https://www.aaai.org/AAAI21Papers/AAAI-7346.ZhouHaoyi.pdf) [\[official code\]](https://github.com/zhouhaoyi/Informer2020) [\[dataset\]](https://github.com/zhouhaoyi/ETDataset)
* Informer: Beyond efficient transformer for long sequence time-series forecasting, in *AAAI* 2021. [\[paper\]](https://arxiv.org/abs/2012.07436) [\[official code\]](https://github.com/zhouhaoyi/Informer2020) [\[dataset\]](https://github.com/zhouhaoyi/ETDataset)
* Temporal fusion transformers for interpretable multi-horizon time series forecasting, in *International Journal of Forecasting* 2021. [\[paper\]](https://www.sciencedirect.com/science/article/pii/S0169207021000637) [\[code\]](https://github.com/mattsherar/Temporal_Fusion_Transform)
* Probabilistic Transformer For Time Series Analysis, in *NeurIPS* 2021. [\[paper\]](https://proceedings.neurips.cc/paper/2021/hash/c68bd9055776bf38d8fc43c0ed283678-Abstract.html)
* Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case, in *arXiv* 2020. [\[paper\]](https://arxiv.org/abs/2001.08317)
Expand Down