-
Notifications
You must be signed in to change notification settings - Fork 111
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
tests: Added test for multitask embeddings
- Loading branch information
1 parent
1650252
commit 197b381
Showing
1 changed file
with
231 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
import os | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
from fastembed import TextEmbedding | ||
from tests.utils import delete_model_cache | ||
|
||
|
||
CANONICAL_VECTOR_VALUES = { | ||
"jinaai/jina-embeddings-v3": [ | ||
{ | ||
"task_id": 0, | ||
"vectors": np.array( | ||
[ | ||
[0.0623, -0.0402, 0.1706, -0.0143, 0.0617], | ||
[-0.1064, -0.0733, 0.0353, 0.0096, 0.0667], | ||
] | ||
), | ||
}, | ||
{ | ||
"task_id": 1, | ||
"vectors": np.array( | ||
[ | ||
[0.0513, -0.0247, 0.1751, -0.0075, 0.0679], | ||
[-0.0987, -0.0786, 0.09, 0.0087, 0.0577], | ||
] | ||
), | ||
}, | ||
{ | ||
"task_id": 2, | ||
"vectors": np.array( | ||
[ | ||
[0.094, -0.1065, 0.1305, 0.0547, 0.0556], | ||
[0.0315, -0.1468, 0.065, 0.0568, 0.0546], | ||
] | ||
), | ||
}, | ||
{ | ||
"task_id": 3, | ||
"vectors": np.array( | ||
[ | ||
[0.0606, -0.0877, 0.1384, 0.0065, 0.0722], | ||
[-0.0502, -0.119, 0.032, 0.0514, 0.0689], | ||
] | ||
), | ||
}, | ||
{ | ||
"task_id": 4, | ||
"vectors": np.array( | ||
[ | ||
[0.0911, -0.0341, 0.1305, -0.026, 0.0576], | ||
[-0.1432, -0.05, 0.0133, 0.0464, 0.0789], | ||
] | ||
), | ||
}, | ||
] | ||
} | ||
docs = ["Hello World", "Follow the white rabbit."] | ||
|
||
|
||
def test_batch_embedding(): | ||
is_ci = os.getenv("CI") | ||
docs_to_embed = docs * 10 | ||
default_task = 4 | ||
|
||
for model_desc in TextEmbedding.list_supported_models(): | ||
# if not is_ci and model_desc["size_in_GB"] > 1: | ||
# continue | ||
|
||
model_name = model_desc["model"] | ||
dim = model_desc["dim"] | ||
|
||
if model_name not in CANONICAL_VECTOR_VALUES.keys(): | ||
continue | ||
|
||
model = TextEmbedding(model_name=model_name, cache_dir="models") | ||
|
||
print(f"evaluating {model_name} default task") | ||
|
||
embeddings = list(model.embed(documents=docs_to_embed, batch_size=6)) | ||
embeddings = np.stack(embeddings, axis=0) | ||
|
||
assert embeddings.shape == (len(docs_to_embed), dim) | ||
|
||
canonical_vector = CANONICAL_VECTOR_VALUES[model_name][default_task]["vectors"] | ||
assert np.allclose( | ||
embeddings[: len(docs), : canonical_vector.shape[1]], canonical_vector, atol=1e-4 | ||
), model_desc["model"] | ||
|
||
if is_ci: | ||
delete_model_cache(model.model._model_dir) | ||
|
||
|
||
def test_single_embedding(): | ||
is_ci = os.getenv("CI") | ||
|
||
for model_desc in TextEmbedding.list_supported_models(): | ||
# if not is_ci and model_desc["size_in_GB"] > 1: | ||
# continue | ||
|
||
model_name = model_desc["model"] | ||
dim = model_desc["dim"] | ||
|
||
if model_name not in CANONICAL_VECTOR_VALUES.keys(): | ||
continue | ||
|
||
model = TextEmbedding(model_name=model_name, cache_dir="models") | ||
|
||
for task in CANONICAL_VECTOR_VALUES[model_name]: | ||
print(f"evaluating {model_name} task_id: {task['task_id']}") | ||
|
||
embeddings = list(model.embed(documents=docs, task_id=task["task_id"])) | ||
embeddings = np.stack(embeddings, axis=0) | ||
|
||
assert embeddings.shape == (len(docs), dim) | ||
|
||
canonical_vector = task["vectors"] | ||
assert np.allclose( | ||
embeddings[: len(docs), : canonical_vector.shape[1]], canonical_vector, atol=1e-4 | ||
), model_desc["model"] | ||
|
||
if is_ci: | ||
delete_model_cache(model.model._model_dir) | ||
|
||
|
||
def test_single_embedding_query(): | ||
is_ci = os.getenv("CI") | ||
task_id = 0 | ||
|
||
for model_desc in TextEmbedding.list_supported_models(): | ||
# if not is_ci and model_desc["size_in_GB"] > 1: | ||
# continue | ||
|
||
model_name = model_desc["model"] | ||
dim = model_desc["dim"] | ||
|
||
if model_name not in CANONICAL_VECTOR_VALUES.keys(): | ||
continue | ||
|
||
model = TextEmbedding(model_name=model_name, cache_dir="models") | ||
|
||
print(f"evaluating {model_name} query_embed task_id: {task_id}") | ||
|
||
embeddings = list(model.query_embed(query=docs)) | ||
embeddings = np.stack(embeddings, axis=0) | ||
|
||
assert embeddings.shape == (len(docs), dim) | ||
|
||
canonical_vector = CANONICAL_VECTOR_VALUES[model_name][task_id]["vectors"] | ||
assert np.allclose( | ||
embeddings[: len(docs), : canonical_vector.shape[1]], canonical_vector, atol=1e-4 | ||
), model_desc["model"] | ||
|
||
if is_ci: | ||
delete_model_cache(model.model._model_dir) | ||
|
||
|
||
def test_single_embedding_passage(): | ||
is_ci = os.getenv("CI") | ||
task_id = 1 | ||
|
||
for model_desc in TextEmbedding.list_supported_models(): | ||
# if not is_ci and model_desc["size_in_GB"] > 1: | ||
# continue | ||
|
||
model_name = model_desc["model"] | ||
dim = model_desc["dim"] | ||
|
||
if model_name not in CANONICAL_VECTOR_VALUES.keys(): | ||
continue | ||
|
||
model = TextEmbedding(model_name=model_name, cache_dir="models") | ||
|
||
print(f"evaluating {model_name} passage_embed task_id: {task_id}") | ||
|
||
embeddings = list(model.passage_embed(texts=docs)) | ||
embeddings = np.stack(embeddings, axis=0) | ||
|
||
assert embeddings.shape == (len(docs), dim) | ||
|
||
canonical_vector = CANONICAL_VECTOR_VALUES[model_name][task_id]["vectors"] | ||
assert np.allclose( | ||
embeddings[: len(docs), : canonical_vector.shape[1]], canonical_vector, atol=1e-4 | ||
), model_desc["model"] | ||
|
||
if is_ci: | ||
delete_model_cache(model.model._model_dir) | ||
|
||
|
||
def test_parallel_processing(): | ||
is_ci = os.getenv("CI") | ||
|
||
docs = ["Hello World", "Follow the white rabbit."] * 100 | ||
|
||
model_name = "jinaai/jina-embeddings-v3" | ||
dim = 1024 | ||
|
||
model = TextEmbedding(model_name=model_name, cache_dir="models") | ||
|
||
embeddings = list(model.embed(docs, batch_size=10, parallel=2)) | ||
embeddings = np.stack(embeddings, axis=0) | ||
|
||
embeddings_2 = list(model.embed(docs, batch_size=10, parallel=None)) | ||
embeddings_2 = np.stack(embeddings_2, axis=0) | ||
|
||
embeddings_3 = list(model.embed(docs, batch_size=10, parallel=0)) | ||
embeddings_3 = np.stack(embeddings_3, axis=0) | ||
|
||
assert embeddings.shape[0] == len(docs) and embeddings.shape[-1] == dim | ||
assert np.allclose(embeddings, embeddings_2, atol=1e-4) | ||
assert np.allclose(embeddings, embeddings_3, atol=1e-4) | ||
|
||
if is_ci: | ||
delete_model_cache(model.model._model_dir) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"model_name", | ||
["jinaai/jina-embeddings-v3"], | ||
) | ||
def test_lazy_load(model_name): | ||
is_ci = os.getenv("CI") | ||
model = TextEmbedding(model_name=model_name, lazy_load=True, cache_dir="models") | ||
assert not hasattr(model.model, "model") | ||
|
||
list(model.embed(docs)) | ||
assert hasattr(model.model, "model") | ||
|
||
if is_ci: | ||
delete_model_cache(model.model._model_dir) |