-
Notifications
You must be signed in to change notification settings - Fork 252
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Unified config manager for toml and command line (#76)
Summary: PR implements an unfied config manager. - Command line args and toml file args are now unified. - Defaults can be loaded from either. options like `training.batchsize` will be available as `config.training.batchsize` where `config` is a config manager object. Test Plan: Test Plan: ============================= test session starts ============================== platform linux -- Python 3.10.13, pytest-8.0.1, pluggy-1.4.0 -- /home/gnadathur/local/a/pytorch-env/bin/python cachedir: .pytest_cache rootdir: /data/users/gnadathur/a/torchtrain configfile: pyproject.toml plugins: cov-4.1.0 collecting ... collected 5 items test/test_job_config.py::TestJobConfig::test_command_line_args PASSED [ 20%] test/test_job_config.py::TestJobConfig::test_command_line_args_with_override PASSED [ 40%] test/test_job_config.py::TestJobConfig::test_job_config_file PASSED [ 60%] test/test_job_config.py::TestJobConfig::test_job_config_file_with_override PASSED [ 80%] test/test_job_config.py::TestJobConfig::test_job_file_does_not_exist PASSED [100%] ---------- coverage: platform linux, python 3.10.13-final-0 ---------- Coverage XML written to file coverage.xml ============================= slowest 20 durations ============================= 0.01s call test/test_job_config.py::TestJobConfig::test_job_config_file_with_override 0.00s call test/test_job_config.py::TestJobConfig::test_job_config_file 0.00s call test/test_job_config.py::TestJobConfig::test_command_line_args 0.00s call test/test_job_config.py::TestJobConfig::test_command_line_args_with_override 0.00s call test/test_job_config.py::TestJobConfig::test_job_file_does_not_exist 0.00s setup test/test_job_config.py::TestJobConfig::test_command_line_args 0.00s teardown test/test_job_config.py::TestJobConfig::test_command_line_args 0.00s setup test/test_job_config.py::TestJobConfig::test_job_file_does_not_exist 0.00s setup test/test_job_config.py::TestJobConfig::test_command_line_args_with_override 0.00s teardown test/test_job_config.py::TestJobConfig::test_command_line_args_with_override 0.00s setup test/test_job_config.py::TestJobConfig::test_job_config_file_with_override 0.00s setup test/test_job_config.py::TestJobConfig::test_job_config_file 0.00s teardown test/test_job_config.py::TestJobConfig::test_job_file_does_not_exist 0.00s teardown test/test_job_config.py::TestJobConfig::test_job_config_file 0.00s teardown test/test_job_config.py::TestJobConfig::test_job_config_file_with_override ============================== 5 passed in 0.10s =============================== Reviewers: Subscribers: Tasks: Tags: Co-authored-by: gnadathur <[email protected]>
- Loading branch information
Showing
13 changed files
with
339 additions
and
173 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
import pytest | ||
from torchtrain.config_manager import JobConfig | ||
|
||
|
||
class TestJobConfig: | ||
def test_command_line_args(self): | ||
config = JobConfig() | ||
config.parse_args([]) | ||
assert config.model.name == "llama" | ||
|
||
def test_job_config_file(self): | ||
config = JobConfig() | ||
config.parse_args( | ||
["--job.config_file", "./torchtrain/train_configs/train_config.toml"] | ||
) | ||
assert config.model.name == "llama" | ||
|
||
def test_job_file_does_not_exist(self): | ||
with pytest.raises(FileNotFoundError): | ||
config = JobConfig() | ||
config.parse_args(["--job.config_file", "ohno.toml"]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
import argparse | ||
import sys | ||
from collections import defaultdict | ||
from typing import Union | ||
|
||
try: | ||
import tomllib | ||
except ModuleNotFoundError: | ||
import tomli as tomllib | ||
|
||
|
||
class JobConfig: | ||
""" | ||
A helper class to manage the train configuration. | ||
Semantics: | ||
- Default config is loaded from a toml file. If no toml file is provided, | ||
then the default config is loaded from argparse defaults. | ||
""" | ||
|
||
def parse_args(self, args_list: list = sys.argv[1:]): | ||
args = JobConfig.init_args_from_command_line(args_list) | ||
config_file = getattr(args, "job.config_file", None) | ||
if config_file is None: | ||
args_dict = self._args_to_two_level_dict(args) | ||
else: | ||
with open(config_file, "rb") as f: | ||
args_dict = tomllib.load(f) | ||
for k, v in args_dict.items(): | ||
class_type = type(k.title(), (), v) | ||
setattr(self, k, class_type()) | ||
self._validate_config() | ||
|
||
def _args_to_two_level_dict(self, args: argparse.Namespace) -> defaultdict: | ||
args_dict = defaultdict(defaultdict) | ||
for k, v in vars(args).items(): | ||
first_level_key, second_level_key = k.split(".", 1) | ||
args_dict[first_level_key][second_level_key] = v | ||
return args_dict | ||
|
||
def _validate_config(self): | ||
# TODO: Add more mandatory validations | ||
assert self.model.name and self.model.flavor and self.model.tokenizer_path | ||
return True | ||
|
||
@staticmethod | ||
def init_args_from_command_line( | ||
args_list: list = sys.argv[1:], | ||
) -> argparse.Namespace: | ||
""" | ||
Each argument starts with <prefix>_ which is the section name in the toml file | ||
followed by name of the option in the toml file. For ex, | ||
model.name translates to: | ||
[model] | ||
name | ||
in the toml file | ||
""" | ||
parser = argparse.ArgumentParser(description="TorchTrain arg parser.") | ||
parser.add_argument( | ||
"--job.config_file", | ||
type=str, | ||
default=None, | ||
help="job config file", | ||
) | ||
|
||
# misc configs | ||
parser.add_argument( | ||
"--job.dump_folder", | ||
type=str, | ||
default="./torchtrain/outputs", | ||
help="folder to dump job outputs", | ||
) | ||
|
||
# profiling configs | ||
parser.add_argument( | ||
"--profiling.run_profiler", | ||
action="store_true", | ||
help="enable pytorch profiler", | ||
) | ||
parser.add_argument( | ||
"--profiling.save_traces_folder", | ||
type=str, | ||
default="profiling/traces", | ||
help="trace file location", | ||
) | ||
parser.add_argument( | ||
"--profiling.profile_every_x_iter", | ||
type=int, | ||
default=10, | ||
help="collect profiler traces every x iterations", | ||
) | ||
# metrics configs | ||
parser.add_argument( | ||
"--metrics.log_freq", | ||
type=int, | ||
default=10, | ||
help="how often to log metrics to TensorBoard", | ||
) | ||
parser.add_argument( | ||
"--metrics.enable_tensorboard", | ||
action="store_true", | ||
help="how often to log metrics to TensorBoard", | ||
) | ||
parser.add_argument( | ||
"--metrics.save_tb_folder", | ||
type=str, | ||
default="tb", | ||
help="folder to dump tensorboard state", | ||
) | ||
|
||
# model configs | ||
parser.add_argument( | ||
"--model.name", | ||
type=str, | ||
default="llama", | ||
help="which model to train", | ||
) | ||
parser.add_argument( | ||
"--model.flavor", | ||
type=str, | ||
default="debugmodel", | ||
help="which model config to train", | ||
) | ||
parser.add_argument( | ||
"--model.tokenizer_path", | ||
type=str, | ||
default="./torchtrain/datasets/tokenizer/tokenizer.model", | ||
help="tokenizer path", | ||
) | ||
|
||
# optimizer configs | ||
parser.add_argument( | ||
"--optimizer.name", type=str, default="AdamW", help="optimizer to use" | ||
) | ||
parser.add_argument( | ||
"--optimizer.lr", type=float, default=8e-4, help="learning rate to use" | ||
) | ||
|
||
# training configs | ||
parser.add_argument( | ||
"--training.dataset", type=str, default="alpaca", help="dataset to use" | ||
) | ||
parser.add_argument( | ||
"--training.batch_size", type=int, default=8, help="batch size" | ||
) | ||
parser.add_argument( | ||
"--training.seq_len", type=int, default=2048, help="sequence length" | ||
) | ||
parser.add_argument( | ||
"--training.warmup_pct", | ||
type=float, | ||
default=0.20, | ||
help="percentage of total training steps to use for warmup", | ||
) | ||
parser.add_argument( | ||
"--training.max_norm", | ||
type=Union[float, int], | ||
default=1.0, | ||
help="max norm for gradient clipping", | ||
) | ||
parser.add_argument( | ||
"--training.steps", type=int, default=-1, help="how many train steps to run" | ||
) | ||
parser.add_argument( | ||
"--training.data_parallel_degree", | ||
type=int, | ||
default=-1, | ||
help="Data Parallelism degree. -1 means leftover ranks will be used (After SP/PP). 1 means disabled.", | ||
) | ||
parser.add_argument( | ||
"--training.sequence_parallel_degree", | ||
type=int, | ||
default=1, | ||
help="Sequence Parallelism degree. 1 means disabled.", | ||
) | ||
parser.add_argument( | ||
"--training.pipeline_parallel_degree", | ||
type=int, | ||
default=1, | ||
help="Pipeline Parallelism degree (default of 1 means disabled)", | ||
) | ||
parser.add_argument( | ||
"--training.compile", | ||
action="store_true", | ||
help="Whether to compile the model.", | ||
) | ||
parser.add_argument( | ||
"--training.checkpoint_interval", | ||
type=int, | ||
default=3600, | ||
help=( | ||
"Checkpointing interval. The unit of measurement is in seconds or " | ||
"steps depending on --training.checkpoint-internval-type." | ||
), | ||
) | ||
parser.add_argument( | ||
"--training.checkpoint_interval_type", | ||
type=str, | ||
default="steps", | ||
help=( | ||
"The checkpointing interval unit of measurement." | ||
"The default value is step." | ||
), | ||
) | ||
parser.add_argument( | ||
"--training.checkpoint_folder", | ||
type=str, | ||
default="", | ||
help=( | ||
"The folder to store the checkpoints. If this is not specified or " | ||
"is an empty string, checkpointing is disabled." | ||
), | ||
) | ||
return parser.parse_args(args_list) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,7 @@ | ||
import torch | ||
import logging | ||
|
||
import torch | ||
|
||
logger = logging.getLogger() | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.