Skip to content

Create top-level torchchat.py CLI binary #601

Create top-level torchchat.py CLI binary

Create top-level torchchat.py CLI binary #601

Workflow file for this run

name: Compile main
on:
push:
branches:
- main
pull_request:
workflow_dispatch:
jobs:
run-tinystories:
strategy:
matrix:
runner: [32-core-ubuntu]
runs-on: ${{matrix.runner}}
steps:
- name: Checkout repo
uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: 3.11
- name: Print machine info
run: |
uname -a
if [ $(uname -s) == Darwin ]; then
sysctl machdep.cpu.brand_string
sysctl machdep.cpu.core_count
fi
- name: Install requirements
run: |
echo "Intalling pip packages"
pip install wheel
pip install cmake
pip install ninja
pip install zstd
pip install -r requirements.txt
echo "Executorch: cloning"
mkdir etorch
cd etorch
git clone https://github.com/pytorch/executorch.git
cd executorch
echo "Inside: ${PWD}"
echo "Executorch: submodule update"
git submodule sync
git submodule update --init
echo "Executorch: installing python interface"
./install_requirements.sh --pybind xnnpack
cd ../..
echo "Inside: ${PWD}"
- name: Download checkpoints
run: |
mkdir -p checkpoints/stories15M
pushd checkpoints/stories15M
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.pt
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.model
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.bin
popd
- name: Run inference
run: |
export MODEL_PATH=${PWD}/checkpoints/stories15M/stories15M.pt
export MODEL_NAME=stories15M
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 > ${PWD}/output_eager
cat ${PWD}/output_eager
python export.py --checkpoint-path ${MODEL_PATH} --output-pte-path ${PWD}/${MODEL_NAME}.pte
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --pte-path ${PWD}/${MODEL_NAME}.pte > ${PWD}/output_et
cat ${PWD}/output_et
echo "Tests complete."
- name: Run inference
run: |
export MODEL_PATH=checkpoints/stories15M/stories15M.pt
export MODEL_NAME=stories15M
export MODEL_DIR=/tmp
python export.py --checkpoint-path ${MODEL_PATH} --output-pte-path ${MODEL_DIR}/${MODEL_NAME}.pte
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --pte-path ${MODEL_DIR}/${MODEL_NAME}.pte > ./output_et
cat ./output_et
echo "******************************************"
echo "******* Emb: channel-wise quantized ******"
echo "******************************************"
python export.py --quant '{"embedding" : {"bitwidth": 8, "groupsize": 0}}' --checkpoint-path ${MODEL_PATH} --output-pte-path ${MODEL_DIR}/${MODEL_NAME}.pte
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --pte-path ${MODEL_DIR}/${MODEL_NAME}.pte > ./output_et
cat ./output_et
echo "******************************************"
echo "******** Emb: group-wise quantized *******"
echo "******************************************"
python export.py --quant '{"embedding" : {"bitwidth": 8, "groupsize": 8}}' --checkpoint-path ${MODEL_PATH} --output-pte-path ${MODEL_DIR}/${MODEL_NAME}.pte
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --pte-path ${MODEL_DIR}/${MODEL_NAME}.pte > ./output_et
cat ./output_et
echo "******************************************"
echo "******* INT8 channel-wise quantized ******"
echo "******************************************"
python export.py --quant '{"linear:int8" : {"bitwidth": 8, "groupsize": 0}}' --checkpoint-path ${MODEL_PATH} --output-pte-path ${MODEL_DIR}/${MODEL_NAME}.pte
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --pte-path ${MODEL_DIR}/${MODEL_NAME}.pte > ./output_et
cat ./output_et
echo "******************************************"
echo "******** INT8 group-wise quantized *******"
echo "******************************************"
python export.py --quant '{"linear:int8" : {"bitwidth": 8, "groupsize": 8}}' --checkpoint-path ${MODEL_PATH} --output-pte-path ${MODEL_DIR}/${MODEL_NAME}.pte
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --pte-path ${MODEL_DIR}/${MODEL_NAME}.pte > ./output_et
cat ./output_et
echo "******************************************"
echo "******** INT4 group-wise quantized *******"
echo "******************************************"
python export.py --quant '{"linear:int4" : {"groupsize": 32}}' --checkpoint-path ${MODEL_PATH} --output-pte-path ${MODEL_DIR}/${MODEL_NAME}.pte
python generate.py --checkpoint-path ${MODEL_PATH} --temperature 0 --pte-path ${MODEL_DIR}/${MODEL_NAME}.pte > ./output_et
cat ./output_et
echo "tests complete"
echo "******************************************"