Skip to content

TorchBench Userbenchmark on T4 Metal #860

TorchBench Userbenchmark on T4 Metal

TorchBench Userbenchmark on T4 Metal #860

name: TorchBench Userbenchmark on T4 Metal
on:
schedule:
- cron: '0 17 * * *' # run at 5 PM UTC
workflow_dispatch:
inputs:
userbenchmark_name:
description: "Name of the user benchmark to run"
userbenchmark_options:
description: "Option of the user benchmark to run"
jobs:
run-userbenchmark:
runs-on: [self-hosted, bm-runner]
timeout-minutes: 1440 # 24 hours
environment: docker-s3-upload
env:
CONDA_ENV_NAME: "userbenchmarks-ci"
PLATFORM_NAME: "aws_t4_metal"
TORCHBENCH_USERBENCHMARK_SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.TORCHBENCH_USERBENCHMARK_SCRIBE_GRAPHQL_ACCESS_TOKEN }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
SETUP_SCRIPT: "/data/nvme/bin/setup_instance.sh"
steps:
- name: Checkout TorchBench
uses: actions/checkout@v3
with:
path: benchmark
- name: Create conda environment
run: |
python benchmark/utils/python_utils.py --create-conda-env "${CONDA_ENV_NAME}"
sudo python benchmark/utils/cuda_utils.py --setup-cuda-softlink
- name: Install PyTorch nightly
run: |
. "${SETUP_SCRIPT}" && . activate "${CONDA_ENV_NAME}"
pushd benchmark
# Install dependencies
python utils/cuda_utils.py --install-torch-deps
# check the machine is tuned
pip install -U py-cpuinfo psutil distro boto3
sudo ${HOME}/miniconda3/envs/${CONDA_ENV_NAME}/bin/python3 torchbenchmark/util/machine_config.py
# Check if nightly builds are available
NIGHTLIES=$(python utils/torch_nightly_utils.py --packages torch)
# If failed, the script will generate empty result
if [ -z $NIGHTLIES ]; then
echo "Torch nightly build failed. Cancel the workflow."
exit 1
fi
# Install PyTorch and torchvision nightly from pip
python utils/cuda_utils.py --install-torch-nightly
python utils/cuda_utils.py --check-torch-nightly-version
# make sure pytorch+cuda works
python -c "import torch; torch.cuda.init()"
- name: Install TorchBench
run: |
set -x
. "${SETUP_SCRIPT}" && conda activate "${CONDA_ENV_NAME}"
pushd benchmark
python install.py
- name: Run user benchmark
run: |
set -x
. "${SETUP_SCRIPT}" && conda activate "${CONDA_ENV_NAME}"
# remove old results
if [ -d benchmark-output ]; then rm -Rf benchmark-output; fi
pushd benchmark
if [ -d .userbenchmark ]; then rm -Rf .userbenchmark; fi
MANUAL_WORKFLOW="${{ github.event.inputs.userbenchmark_name }}"
if [ -z "${MANUAL_WORKFLOW}" ]; then
# Figure out what userbenchmarks we should run, and run it
python ./.github/scripts/userbenchmark/schedule-benchmarks.py --platform ${PLATFORM_NAME}
if [ -d ./.userbenchmark ]; then
cp -r ./.userbenchmark ../benchmark-output
else
mkdir ../benchmark-output
fi
else
python run_benchmark.py "${{ github.event.inputs.userbenchmark_name }}" ${{ github.event.inputs.userbenchmark_options }}
cp -r ./.userbenchmark/"${{ github.event.inputs.userbenchmark_name }}" ../benchmark-output
fi
- name: Upload artifact
uses: actions/upload-artifact@v3
with:
name: TorchBench result
path: benchmark-output/
- name: Upload result jsons to Scribe
run: |
. "${SETUP_SCRIPT}" && conda activate "${CONDA_ENV_NAME}"
conda install -y six
pushd benchmark
RESULTS=($(find ${PWD}/../benchmark-output -name "metrics-*.json" -maxdepth 2 | sort -r))
echo "Uploading result jsons: ${RESULTS}"
for r in ${RESULTS[@]}; do
python ./scripts/userbenchmark/upload_scribe.py --userbenchmark_json "${r}" --userbenchmark_platform "${PLATFORM_NAME}"
python ./scripts/userbenchmark/upload_s3.py --upload-file "${r}" --userbenchmark_platform "${PLATFORM_NAME}"
done
- name: Remove conda environment
run: |
conda env remove --name "${CONDA_ENV_NAME}"
- name: Cleanup repo
if: always()
run: |
sudo rm -rf benchmark || true