Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CPU support and update README #119

Merged
merged 1 commit into from
May 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,10 @@ For example:
```
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
```
or
```
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
```

Installation instructions vary by platform. Please see the website https://pytorch.org/

Expand Down
21 changes: 17 additions & 4 deletions experiments/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ These experiments were run on an Amazon p4d.24xlarge instance. See the Product
- 1152 GiB of RAM
- Software

Meanwhile, these experiments (fp32, bf16, compile, SDPA, Triton, NT) can run on CPU platform as well. Experiment results will be shown in the near future.

### Versions

Expand All @@ -47,11 +48,17 @@ These experiments were run on an Amazon p4d.24xlarge instance. See the Product
### Installation instructions

```
$ conda create -n nightly20231117py310
$ conda activate nightly20231117py310
$ conda create -n nightlypy310
$ conda activate nightlypy310
$ conda install python=3.10
$ pip install https://download.pytorch.org/whl/nightly/cu121/torch-2.2.0.dev20231117%2Bcu121-cp310-cp310-linux_x86_64.whl
$ pip install https://download.pytorch.org/whl/nightly/cu121/torchvision-0.17.0.dev20231117%2Bcu121-cp310-cp310-linux_x86_64.whl
For GPU,
- $ pip install https://download.pytorch.org/whl/nightly/cu121/torch-2.2.0.dev20231117%2Bcu121-cp310-cp310-linux_x86_64.whl
- $ pip install https://download.pytorch.org/whl/nightly/cu121/torchvision-0.17.0.dev20231117%2Bcu121-cp310-cp310-linux_x86_64.whl
For CPU,
- $ pip install https://download.pytorch.org/whl/nightly/cpu/torch-2.4.0.dev20240509%2Bcpu-cp310-cp310-linux_x86_64.whl
- $ pip install https://download.pytorch.org/whl/nightly/cpu/torchvision-0.19.0.dev20240509%2Bcpu-cp310-cp310-linux_x86_64.whl
- $ pip install triton

$ git clone https://github.com/cpuhrsch/segment-anything.git
$ cd segment-anything
$ pip install -e .
Expand All @@ -66,10 +73,16 @@ If you plan to run the scripts that run the experiments from segment-anything-fa

### How to run experiments

For GPU platform,
```
$ python run_experiments.py 16 vit_b <pytorch_github> <segment-anything_github> <path_to_experiments_data> --run-experiments --num-workers 32
```

For CPU platform, set SEGMENT_ANYTHING_FAST_USE_FLASH_4 as 0, since Custom flash attention kernels were written specifically for A100.
```
$ SEGMENT_ANYTHING_FAST_USE_FLASH_4=0 python run_experiments.py 16 vit_b <pytorch_github> <segment-anything_github> <path_to_experiments_data> --run-experiments --num-workers 32 --device cpu
```

If at any point you run into issue, please note that you can increase verbosity by adding `--capture_output False` to above command. Also, please don't hesitate to open an issue.


Expand Down
44 changes: 29 additions & 15 deletions experiments/eval_combo.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from data import build_data, setup_coco_img_ids
import math
import segment_anything_fast
import time

torch._dynamo.config.cache_size_limit = 50000

Expand Down Expand Up @@ -64,10 +65,13 @@ def build_results_batch_nested(predictor, batch, batch_size, pad_input_image_bat
# We explicitly exclude data transfers from the timing to focus
# only on the kernel performance.
# Next we synchronize and set two events to start timing.
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if torch.cuda.is_available():
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
else:
t0 = time.time()

with torch.autograd.profiler.record_function("timed region"):
with torch.autograd.profiler.record_function("image encoder"):
Expand All @@ -93,9 +97,12 @@ def build_results_batch_nested(predictor, batch, batch_size, pad_input_image_bat
# the amount of time spent on the GPU. This is a fairly tight measurement
# around the launched GPU kernels and excludes data movement from host
# to device.
end_event.record()
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
if torch.cuda.is_available():
end_event.record()
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
else:
elapsed_time = time.time() - t0
return sum(result_batch, []), orig_input_image_batch_size, elapsed_time

def build_results_batch(predictor, batch, batch_size, pad_input_image_batch):
Expand Down Expand Up @@ -123,10 +130,13 @@ def build_results_batch(predictor, batch, batch_size, pad_input_image_batch):
# We explicitly exclude data transfers from the timing to focus
# only on the kernel performance.
# Next we synchronize and set two events to start timing.
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if torch.cuda.is_available():
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
else:
t0 = time.time()

with torch.autograd.profiler.record_function("timed region"):
with torch.autograd.profiler.record_function("image encoder"):
Expand Down Expand Up @@ -157,9 +167,12 @@ def build_results_batch(predictor, batch, batch_size, pad_input_image_batch):
# the amount of time spent on the GPU. This is a fairly tight measurement
# around the launched GPU kernels and excludes data movement from host
# to device.
end_event.record()
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
if torch.cuda.is_available():
end_event.record()
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
else:
elapsed_time = time.time() - t0
return result_batch, orig_input_image_batch_size, elapsed_time


Expand Down Expand Up @@ -290,6 +303,7 @@ def run(
memory_path=None,
use_local_sam_fork=False,
use_compiler_settings=False,
device="cuda"
):
from torch._inductor import config as inductorconfig
inductorconfig.triton.unique_kernel_names = True
Expand Down Expand Up @@ -327,7 +341,7 @@ def run(
else:
from segment_anything import sam_model_registry, SamPredictor
checkpoint_path = model_type_to_checkpoint[sam_model_type]
sam = sam_model_registry[sam_model_type](checkpoint=checkpoint_path).cuda()
sam = sam_model_registry[sam_model_type](checkpoint=checkpoint_path).to(torch.device(device))
predictor = SamPredictor(sam)

from segment_anything_fast import tools
Expand Down
10 changes: 7 additions & 3 deletions experiments/run_experiments.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,8 @@ def run_experiment(experiments_data,
limit=None,
profile_path=None,
profile_top=False,
memory_path=None):
memory_path=None,
device="cuda"):
root_cmd = ["python", "eval_combo.py",
"--coco_root_dir",
f"{experiments_data}/datasets/coco2017",
Expand Down Expand Up @@ -84,6 +85,7 @@ def run_experiment(experiments_data,
args = args + ["--memory-path", memory_path]
if extra_args is None:
extra_args = []
args = args + ["--device", device]
args = args + extra_args
if print_header:
args = args + ["--print_header", "True"]
Expand Down Expand Up @@ -145,7 +147,8 @@ def run(batch_size,
num_workers=32,
print_header=True,
capture_output=True,
local_fork_only=False):
local_fork_only=False,
device="cuda"):

assert model == "vit_b" or model == "vit_h"

Expand All @@ -155,7 +158,8 @@ def run(batch_size,
model,
batch_size=batch_size,
num_workers=num_workers,
capture_output=capture_output)
capture_output=capture_output,
device=device)

print_header = True
if run_traces:
Expand Down
Loading