Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FIX] feed generator instead of seed to pipeline #57

Merged
merged 1 commit into from
Apr 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 9 additions & 12 deletions marigold/marigold_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ def __call__(
match_input_res: bool = True,
resample_method: str = "bilinear",
batch_size: int = 0,
seed: Union[int, None] = None,
generator: Union[torch.Generator, None] = None,
color_map: str = "Spectral",
show_progress_bar: bool = True,
ensemble_kwargs: Dict = None,
Expand All @@ -146,8 +146,8 @@ def __call__(
batch_size (`int`, *optional*, defaults to `0`):
Inference batch size, no bigger than `num_ensemble`.
If set to 0, the script will automatically decide the proper batch size.
seed (`int`, *optional*, defaults to `None`)
Reproducibility seed.
generator (`torch.Generator`, *optional*, defaults to `None`)
Random generator for initial noise generation.
show_progress_bar (`bool`, *optional*, defaults to `True`):
Display a progress bar of diffusion denoising.
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
Expand Down Expand Up @@ -228,7 +228,7 @@ def __call__(
rgb_in=batched_img,
num_inference_steps=denoising_steps,
show_pbar=show_progress_bar,
seed=seed,
generator=generator,
)
depth_pred_ls.append(depth_pred_raw.detach())
depth_preds = torch.concat(depth_pred_ls, dim=0).squeeze()
Expand Down Expand Up @@ -322,7 +322,7 @@ def single_infer(
self,
rgb_in: torch.Tensor,
num_inference_steps: int,
seed: Union[int, None],
generator: Union[torch.Generator, None],
show_pbar: bool,
) -> torch.Tensor:
"""
Expand All @@ -335,6 +335,8 @@ def single_infer(
Number of diffusion denoisign steps (DDIM) during inference.
show_pbar (`bool`):
Display a progress bar of diffusion denoising.
generator (`torch.Generator`)
Random generator for initial noise generation.
Returns:
`torch.Tensor`: Predicted depth map.
"""
Expand All @@ -349,16 +351,11 @@ def single_infer(
rgb_latent = self.encode_rgb(rgb_in)

# Initial depth map (noise)
if seed is None:
rand_num_generator = None
else:
rand_num_generator = torch.Generator(device=device)
rand_num_generator.manual_seed(seed)
depth_latent = torch.randn(
rgb_latent.shape,
device=device,
dtype=self.dtype,
generator=rand_num_generator,
generator=generator,
) # [B, 4, h, w]

# Batched empty text embedding
Expand Down Expand Up @@ -391,7 +388,7 @@ def single_infer(

# compute the previous noisy sample x_t -> x_t-1
depth_latent = self.scheduler.step(
noise_pred, t, depth_latent, generator=rand_num_generator
noise_pred, t, depth_latent, generator=generator
).prev_sample

depth = self.decode_depth(depth_latent)
Expand Down
9 changes: 8 additions & 1 deletion run.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,6 +229,13 @@
# Read input image
input_image = Image.open(rgb_path)

# Random number generator
if seed is None:
generator = None
else:
generator = torch.Generator(device=device)
generator.manual_seed(seed)

# Predict depth
pipe_out = pipe(
input_image,
Expand All @@ -240,7 +247,7 @@
color_map=color_map,
show_progress_bar=True,
resample_method=resample_method,
seed=seed,
generator=generator,
)

depth_pred: np.ndarray = pipe_out.depth_np
Expand Down
Loading