Skip to content

Commit

Permalink
Get partitioned heat conduction case form https://github.com/precice/…
Browse files Browse the repository at this point in the history
  • Loading branch information
BenjaminRodenberg committed Nov 26, 2024
1 parent 809fa23 commit 74eecdc
Show file tree
Hide file tree
Showing 9 changed files with 453 additions and 0 deletions.
6 changes: 6 additions & 0 deletions tutorials/partitioned-heat-conduction/fenicsx/clean.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
#!/bin/sh
set -e -u

. ../../tools/cleaning-tools.sh

clean_fenics .
16 changes: 16 additions & 0 deletions tutorials/partitioned-heat-conduction/fenicsx/errorcomputation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
from ufl import dx
from dolfinx.fem import assemble_scalar, form
import numpy as np
from mpi4py import MPI


def compute_errors(u_approx, u_ref, total_error_tol=10 ** -4):
mesh = u_ref.function_space.mesh

# compute total L2 error between reference and calculated solution
error_pointwise = form(((u_approx - u_ref) / u_ref) ** 2 * dx)
error_total = np.sqrt(mesh.comm.allreduce(assemble_scalar(error_pointwise), MPI.SUM))

assert (error_total < total_error_tol)

return error_total
253 changes: 253 additions & 0 deletions tutorials/partitioned-heat-conduction/fenicsx/heat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
"""
The basic example is taken from "Langtangen, Hans Petter, and Anders Logg. Solving PDEs in Python: The FEniCS
Tutorial I. Springer International Publishing, 2016."
The example code has been extended with preCICE API calls and mixed boundary conditions to allow for a Dirichlet-Neumann
coupling of two separate heat equations. It also has been adapted to be compatible with FEniCSx.
The original source code can be found on https://jsdokken.com/dolfinx-tutorial/chapter2/heat_code.html.
Heat equation with Dirichlet conditions. (Dirichlet problem)
u'= Laplace(u) + f in the unit square [0,1] x [0,1]
u = u_C on the coupling boundary at x = 1
u = u_D on the remaining boundary
u = u_0 at t = 0
u = 1 + x^2 + alpha*y^2 + \beta*t
f = beta - 2 - 2*alpha
Heat equation with mixed boundary conditions. (Neumann problem)
u'= Laplace(u) + f in the shifted unit square [1,2] x [0,1]
du/dn = f_N on the coupling boundary at x = 1
u = u_D on the remaining boundary
u = u_0 at t = 0
u = 1 + x^2 + alpha*y^2 + \beta*t
f = beta - 2 - 2*alpha
"""

from __future__ import print_function, division
from mpi4py import MPI
from dolfinx.fem import Function, FunctionSpace, Expression, Constant, dirichletbc, locate_dofs_geometrical
from dolfinx.fem.petsc import LinearProblem
from dolfinx.io import XDMFFile
from ufl import TrialFunction, TestFunction, dx, ds, dot, grad, inner, lhs, rhs, FiniteElement, VectorElement
from fenicsxprecice import Adapter
from errorcomputation import compute_errors
from my_enums import ProblemType, DomainPart
import argparse
import numpy as np
from problem_setup import get_geometry


def determine_gradient(V_g, u):
"""
compute flux following http://hplgit.github.io/INF5620/doc/pub/fenics_tutorial1.1/tu2.html#tut-poisson-gradu
:param V_g: Vector function space
:param u: solution where gradient is to be determined
"""

w = TrialFunction(V_g)
v = TestFunction(V_g)

a = inner(w, v) * dx
L = inner(grad(u), v) * dx
problem = LinearProblem(a, L)
return problem.solve()


parser = argparse.ArgumentParser(description="Solving heat equation for simple or complex interface case")
command_group = parser.add_mutually_exclusive_group(required=True)
command_group.add_argument("-d", "--dirichlet", help="create a dirichlet problem", dest="dirichlet",
action="store_true")
command_group.add_argument("-n", "--neumann", help="create a neumann problem", dest="neumann", action="store_true")
parser.add_argument("-e", "--error-tol", help="set error tolerance", type=float, default=10**-6,)

args = parser.parse_args()

fenics_dt = .1 # time step size
# Error is bounded by coupling accuracy. In theory we would obtain the analytical solution.
error_tol = args.error_tol

alpha = 3 # parameter alpha
beta = 1.2 # parameter beta

if args.dirichlet and not args.neumann:
problem = ProblemType.DIRICHLET
domain_part = DomainPart.LEFT
elif args.neumann and not args.dirichlet:
problem = ProblemType.NEUMANN
domain_part = DomainPart.RIGHT

mesh, coupling_boundary, remaining_boundary = get_geometry(MPI.COMM_WORLD, domain_part)

# Define function space using mesh
scalar_element = FiniteElement("P", mesh.ufl_cell(), 2)
vector_element = VectorElement("P", mesh.ufl_cell(), 1)
V = FunctionSpace(mesh, scalar_element)
V_g = FunctionSpace(mesh, vector_element)
W = V_g.sub(0).collapse()[0]

# Define boundary conditions


class Expression_u_D:
def __init__(self):
self.t = 0.0

def eval(self, x):
return np.full(x.shape[1], 1 + x[0] * x[0] + alpha * x[1] * x[1] + beta * self.t)


u_D = Expression_u_D()
u_D_function = Function(V)
u_D_function.interpolate(u_D.eval)

if problem is ProblemType.DIRICHLET:
# Define flux in x direction
class Expression_f_N:
def __init__(self):
pass

def eval(self, x):
return np.full(x.shape[1], 2 * x[0])

f_N = Expression_f_N()
f_N_function = Function(V)
f_N_function.interpolate(f_N.eval)

# Define initial value
u_n = Function(V, name="Temperature")
u_n.interpolate(u_D.eval)

precice, precice_dt, initial_data = None, 0.0, None

# Initialize the adapter according to the specific participant
if problem is ProblemType.DIRICHLET:
precice = Adapter(MPI.COMM_WORLD, adapter_config_filename="precice-adapter-config-D.json")
precice_dt = precice.initialize(coupling_boundary, read_function_space=V, write_object=f_N_function)
elif problem is ProblemType.NEUMANN:
precice = Adapter(MPI.COMM_WORLD, adapter_config_filename="precice-adapter-config-N.json")
precice_dt = precice.initialize(coupling_boundary, read_function_space=W, write_object=u_D_function)

dt = Constant(mesh, 0.0)
dt.value = np.min([fenics_dt, precice_dt])

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)


class Expression_f:
def __init__(self):
self.t = 0.0

def eval(self, x):
return np.full(x.shape[1], beta - 2 - 2 * alpha)


f = Expression_f()
f_function = Function(V)
F = u * v / dt * dx + dot(grad(u), grad(v)) * dx - (u_n / dt + f_function) * v * dx

dofs_remaining = locate_dofs_geometrical(V, remaining_boundary)
bcs = [dirichletbc(u_D_function, dofs_remaining)]

coupling_expression = precice.create_coupling_expression()
read_data = precice.read_data()
precice.update_coupling_expression(coupling_expression, read_data)
if problem is ProblemType.DIRICHLET:
# modify Dirichlet boundary condition on coupling interface
dofs_coupling = locate_dofs_geometrical(V, coupling_boundary)
bcs.append(dirichletbc(coupling_expression, dofs_coupling))
if problem is ProblemType.NEUMANN:
# modify Neumann boundary condition on coupling interface, modify weak
# form correspondingly
F += v * coupling_expression * ds

a, L = lhs(F), rhs(F)

# Time-stepping
u_np1 = Function(V, name="Temperature")
t = 0

# reference solution at t=0
u_ref = Function(V, name="reference")
u_ref.interpolate(u_D_function)

# Generating output files
temperature_out = XDMFFile(MPI.COMM_WORLD, f"./output/{precice.get_participant_name()}.xdmf", "w")
temperature_out.write_mesh(mesh)
ref_out = XDMFFile(MPI.COMM_WORLD, f"./output/ref{precice.get_participant_name()}.xdmf", "w")
ref_out.write_mesh(mesh)

# output solution at t=0, n=0
n = 0

temperature_out.write_function(u_n, t)
ref_out.write_function(u_ref, t)

u_D.t = t + dt.value
u_D_function.interpolate(u_D.eval)
f.t = t + dt.value
f_function.interpolate(f.eval)

if problem is ProblemType.DIRICHLET:
flux = Function(V_g, name="Heat-Flux")

while precice.is_coupling_ongoing():

# write checkpoint
if precice.is_action_required(precice.action_write_iteration_checkpoint()):
precice.store_checkpoint(u_n, t, n)

read_data = precice.read_data()

# Update the coupling expression with the new read data
precice.update_coupling_expression(coupling_expression, read_data)

dt.value = np.min([fenics_dt, precice_dt])

linear_problem = LinearProblem(a, L, bcs=bcs)
u_np1 = linear_problem.solve()

# Write data to preCICE according to which problem is being solved
if problem is ProblemType.DIRICHLET:
# Dirichlet problem reads temperature and writes flux on boundary to Neumann problem
flux = determine_gradient(V_g, u_np1)
flux_x = Function(W)
flux_x.interpolate(flux.sub(0))
precice.write_data(flux_x)
elif problem is ProblemType.NEUMANN:
# Neumann problem reads flux and writes temperature on boundary to Dirichlet problem
precice.write_data(u_np1)

precice_dt = precice.advance(dt.value)

# roll back to checkpoint
if precice.is_action_required(precice.action_read_iteration_checkpoint()):
u_cp, t_cp, n_cp = precice.retrieve_checkpoint()
u_n.interpolate(u_cp)
t = t_cp
n = n_cp
else: # update solution
u_n.interpolate(u_np1)
t += dt.value
n += 1

if precice.is_time_window_complete():
u_ref.interpolate(u_D_function)
error = compute_errors(u_n, u_ref, total_error_tol=error_tol)
print('n = %d, t = %.2f: L2 error on domain = %.3g' % (n, t, error))
print('output u^%d and u_ref^%d' % (n, n))

temperature_out.write_function(u_n, t)
ref_out.write_function(u_ref, t)

# Update Dirichlet BC
u_D.t = t + dt.value
u_D_function.interpolate(u_D.eval)
f.t = t + dt.value
f_function.interpolate(f.eval)


# Hold plot
precice.finalize()
17 changes: 17 additions & 0 deletions tutorials/partitioned-heat-conduction/fenicsx/my_enums.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from enum import Enum


class ProblemType(Enum):
"""
Enum defines problem type. Details see above.
"""
DIRICHLET = 1 # Dirichlet problem
NEUMANN = 2 # Neumann problem


class DomainPart(Enum):
"""
Enum defines which part of the domain [x_left, x_right] x [y_bottom, y_top] we compute.
"""
LEFT = 1 # left part of domain in simple interface case
RIGHT = 2 # right part of domain in simple interface case
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"participant_name": "Dirichlet",
"config_file_name": "../precice-config.xml",
"interface": {
"coupling_mesh_name": "Dirichlet-Mesh",
"write_data_name": "Heat-Flux",
"read_data_name": "Temperature"
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"participant_name": "Neumann",
"config_file_name": "../precice-config.xml",
"interface": {
"coupling_mesh_name": "Neumann-Mesh",
"write_data_name": "Temperature",
"read_data_name": "Heat-Flux"
}
}
46 changes: 46 additions & 0 deletions tutorials/partitioned-heat-conduction/fenicsx/problem_setup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
"""
Problem setup for partitioned-heat-conduction/fenicsx tutorial
"""
from dolfinx.mesh import DiagonalType, create_rectangle
from my_enums import DomainPart
import numpy as np


y_bottom, y_top = 0, 1
x_left, x_right = 0, 2
x_coupling = 1.0 # x coordinate of coupling interface


def exclude_straight_boundary(x):
tol = 1E-14
return np.logical_or(
np.logical_or(~np.isclose(x[0], x_coupling, tol), np.isclose(x[1], y_top, tol)),
np.isclose(x[1], y_bottom, tol)
)


def straight_boundary(x):
tol = 1E-14
return np.isclose(x[0], x_coupling, tol)


def get_geometry(mpi_comm, domain_part):
nx = ny = 9
low_resolution = 5
high_resolution = 5
n_vertices = 20

if domain_part is DomainPart.LEFT:
p0 = (x_left, y_bottom)
p1 = (x_coupling, y_top)
elif domain_part is DomainPart.RIGHT:
p0 = (x_coupling, y_bottom)
p1 = (x_right, y_top)
else:
raise Exception("invalid domain_part: {}".format(domain_part))

mesh = create_rectangle(mpi_comm, [p0, p1], [nx, ny], diagonal=DiagonalType.left)
coupling_boundary = straight_boundary
remaining_boundary = exclude_straight_boundary

return mesh, coupling_boundary, remaining_boundary
16 changes: 16 additions & 0 deletions tutorials/partitioned-heat-conduction/fenicsx/run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
#!/bin/sh
set -e -u

while getopts ":dn" opt; do
case ${opt} in
d)
python3 heat.py -d --error-tol 10e-3
;;
n)
python3 heat.py -n --error-tol 10e-3
;;
\?)
echo "Usage: cmd [-d] [-n]"
;;
esac
done
Loading

0 comments on commit 74eecdc

Please sign in to comment.