Skip to content

Commit

Permalink
Remove debug lines
Browse files Browse the repository at this point in the history
  • Loading branch information
pomonam committed Jul 8, 2024
1 parent 3dce62d commit 1dc7d85
Show file tree
Hide file tree
Showing 2 changed files with 53 additions and 63 deletions.
2 changes: 0 additions & 2 deletions kronfluence/module/tracker/factor.py
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,6 @@ def forward_hook(module: nn.Module, inputs: Tuple[torch.Tensor], outputs: torch.

@torch.no_grad()
def backward_hook(output_gradient: torch.Tensor) -> None:
print("Normal")
if self.cached_activations is None:
self._raise_cache_not_found_exception()
handle = self.cached_hooks.pop()
Expand All @@ -274,7 +273,6 @@ def backward_hook(output_gradient: torch.Tensor) -> None:

@torch.no_grad()
def shared_backward_hook(output_gradient: torch.Tensor) -> None:
print("Shared processed")
handle = self.cached_hooks.pop()
handle.remove()
output_gradient = self._preprocess_gradient(
Expand Down
114 changes: 53 additions & 61 deletions tests/gpu_tests/compile_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
from kronfluence.analyzer import Analyzer, prepare_model
from kronfluence.arguments import FactorArguments, ScoreArguments
from kronfluence.utils.common.factor_arguments import pytest_factor_arguments
from kronfluence.utils.common.score_arguments import pytest_score_arguments
from kronfluence.utils.constants import (
ALL_MODULE_NAME,
COVARIANCE_FACTOR_NAMES,
Expand Down Expand Up @@ -126,67 +127,58 @@ def test_lambda_shared_matrices(self) -> None:
rtol=RTOL,
)

# def test_pairwise_scores(self) -> None:
# pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=OLD_SCORE_NAME)
#
# score_args = ScoreArguments(
# score_dtype=torch.float64,
# per_sample_gradient_dtype=torch.float64,
# precondition_dtype=torch.float64,
# )
# self.analyzer.compute_pairwise_scores(
# scores_name=NEW_SCORE_NAME,
# factors_name=OLD_FACTOR_NAME,
# query_dataset=self.eval_dataset,
# train_dataset=self.train_dataset,
# train_indices=list(range(TRAIN_INDICES)),
# query_indices=list(range(QUERY_INDICES)),
# per_device_query_batch_size=12,
# per_device_train_batch_size=512,
# score_args=score_args,
# overwrite_output_dir=True,
# )
# new_pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=NEW_SCORE_NAME)
#
# print(f"Previous score: {pairwise_scores[ALL_MODULE_NAME][10]}")
# print(f"Previous shape: {pairwise_scores[ALL_MODULE_NAME].shape}")
# print(f"New score: {new_pairwise_scores[ALL_MODULE_NAME][10]}")
# print(f"New shape: {new_pairwise_scores[ALL_MODULE_NAME].shape}")
# assert check_tensor_dict_equivalence(
# pairwise_scores,
# new_pairwise_scores,
# atol=1e-5,
# rtol=1e-3,
# )
#
# def test_self_scores(self) -> None:
# score_args = ScoreArguments(
# score_dtype=torch.float64,
# per_sample_gradient_dtype=torch.float64,
# precondition_dtype=torch.float64,
# )
# self.analyzer.compute_self_scores(
# scores_name=NEW_SCORE_NAME,
# factors_name=OLD_FACTOR_NAME,
# train_dataset=self.train_dataset,
# train_indices=list(range(TRAIN_INDICES)),
# per_device_train_batch_size=512,
# score_args=score_args,
# overwrite_output_dir=True,
# )
# new_self_scores = self.analyzer.load_self_scores(scores_name=NEW_SCORE_NAME)
#
# self_scores = self.analyzer.load_self_scores(scores_name=OLD_SCORE_NAME)
# print(f"Previous score: {self_scores[ALL_MODULE_NAME]}")
# print(f"Previous shape: {self_scores[ALL_MODULE_NAME].shape}")
# print(f"New score: {new_self_scores[ALL_MODULE_NAME]}")
# print(f"New shape: {new_self_scores[ALL_MODULE_NAME].shape}")
# assert check_tensor_dict_equivalence(
# self_scores,
# new_self_scores,
# atol=1e-5,
# rtol=1e-3,
# )
def test_pairwise_scores(self) -> None:
score_args = pytest_score_arguments()
self.analyzer.compute_pairwise_scores(
scores_name=NEW_SCORE_NAME,
factors_name=OLD_FACTOR_NAME,
query_dataset=self.eval_dataset,
train_dataset=self.train_dataset,
train_indices=list(range(TRAIN_INDICES)),
query_indices=list(range(QUERY_INDICES)),
per_device_query_batch_size=12,
per_device_train_batch_size=512,
score_args=score_args,
overwrite_output_dir=True,
)
new_pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=NEW_SCORE_NAME)
pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=OLD_SCORE_NAME)

print(f"Previous score: {pairwise_scores[ALL_MODULE_NAME][10]}")
print(f"Previous shape: {pairwise_scores[ALL_MODULE_NAME].shape}")
print(f"New score: {new_pairwise_scores[ALL_MODULE_NAME][10]}")
print(f"New shape: {new_pairwise_scores[ALL_MODULE_NAME].shape}")
assert check_tensor_dict_equivalence(
pairwise_scores,
new_pairwise_scores,
atol=ATOL,
rtol=RTOL,
)

def test_self_scores(self) -> None:
score_args = pytest_score_arguments()
self.analyzer.compute_self_scores(
scores_name=NEW_SCORE_NAME,
factors_name=OLD_FACTOR_NAME,
train_dataset=self.train_dataset,
train_indices=list(range(TRAIN_INDICES)),
per_device_train_batch_size=512,
score_args=score_args,
overwrite_output_dir=True,
)
new_self_scores = self.analyzer.load_self_scores(scores_name=NEW_SCORE_NAME)
self_scores = self.analyzer.load_self_scores(scores_name=OLD_SCORE_NAME)

print(f"Previous score: {self_scores[ALL_MODULE_NAME]}")
print(f"Previous shape: {self_scores[ALL_MODULE_NAME].shape}")
print(f"New score: {new_self_scores[ALL_MODULE_NAME]}")
print(f"New shape: {new_self_scores[ALL_MODULE_NAME].shape}")
assert check_tensor_dict_equivalence(
self_scores,
new_self_scores,
atol=ATOL,
rtol=RTOL,
)


if __name__ == "__main__":
Expand Down

0 comments on commit 1dc7d85

Please sign in to comment.