nlist
is an R package to create and manipulate numeric list (nlist
)
objects.
An nlist
is an S3 class list of uniquely named numeric objects. An
numeric object is an integer or double vector, matrix or array. nlist
objects are the raw data inputs for analytic engines such as JAGS, STAN
and TMB.
An nlists
object is a S3 class list of nlist
objects with the same
names, dimensionalities and typeofs. nlists
objects are useful for
storing multiple realizations of simulated data sets. They can be
converted to coda::mcmc
and coda::mcmc.list
objects.
An numeric object is an integer or double vector, matrix or array.
library(nlist)
is.numeric(1L)
#> [1] TRUE
is.numeric(matrix(1:3))
#> [1] TRUE
An nlist
is an S3 class list of uniquely named numeric objects.
It is straightforward to create an new nlist
object.
library(nlist)
nlist <- nlist(x = 1, y = matrix(1:9, 3))
nlist
#> $x
#> [1] 1
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 1 4 7
#> [2,] 2 5 8
#> [3,] 3 6 9
#>
#> an nlist object with 2 numeric elements
An nlists
object is a S3 class list of nlist
objects with the same
names, dimensionalities and typeofs.
The nchains attribute is used to keep track of the number of chains.
nlists <- nlists(
nlist(x = 1, y = matrix(1:9, 3)),
nlist(x = -2, y = matrix(2:10, 3)),
nlist(x = 10, y = matrix(22:30, 3)),
nlist(x = -100, y = matrix(-2:-10, 3))
)
print(nlists)
#> $x
#> [1] -0.5
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 1.5 4.5 7.5
#> [2,] 2.5 5.5 8.5
#> [3,] 3.5 6.5 9.5
#>
#> an nlists object of 4 nlist objects each with 2 numeric elements
A data.frame can be coerced to an nlist
object
data <- data.frame(
lgl = c(TRUE, NA),
dte = as.Date(c("2001-01-02", "2001-01-01")),
fac = factor(c("b", "a"))
)
as_nlist(data)
#> $lgl
#> [1] 1 NA
#>
#> $dte
#> [1] 11324 11323
#>
#> $fac
#> [1] 2 1
#>
#> an nlist object with 3 numeric elements
And an nlist
objects can be converted to an mcmc
or term_frame
objects (and converted back again)
as_mcmc(nlist)
#> Markov Chain Monte Carlo (MCMC) output:
#> Start = 1
#> End = 1
#> Thinning interval = 1
#> x y[1,1] y[2,1] y[3,1] y[1,2] y[2,2] y[3,2] y[1,3] y[2,3] y[3,3]
#> [1,] 1 1 2 3 4 5 6 7 8 9
as_term_frame(nlist)
#> term value
#> 1 x 1
#> 2 y[1,1] 1
#> 3 y[2,1] 2
#> 4 y[3,1] 3
#> 5 y[1,2] 4
#> 6 y[2,2] 5
#> 7 y[3,2] 6
#> 8 y[1,3] 7
#> 9 y[2,3] 8
#> 10 y[3,3] 9
The estimates()
function can be used to aggregate an nlists
object
to an nlist
object.
estimates(nlists, fun = mean)
#> $x
#> [1] -22.75
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 5.75 7.25 8.75
#> [2,] 6.25 7.75 9.25
#> [3,] 6.75 8.25 9.75
#>
#> an nlist object with 2 numeric elements
while the tidy()
function treats the values as if they are MCMC
samples and summarises the terms as a tidy tibble.
tidy(nlists, simplify = TRUE)
#> # A tibble: 10 × 5
#> term estimate lower upper svalue
#> <term> <dbl> <dbl> <dbl> <dbl>
#> 1 x -0.5 -92.6 9.32 0
#> 2 y[1,1] 1.5 -1.77 20.5 0.737
#> 3 y[2,1] 2.5 -2.62 21.5 0.737
#> 4 y[3,1] 3.5 -3.47 22.5 0.737
#> 5 y[1,2] 4.5 -4.32 23.5 0.737
#> 6 y[2,2] 5.5 -5.17 24.5 0.737
#> 7 y[3,2] 6.5 -6.02 25.5 0.737
#> 8 y[1,3] 7.5 -6.87 26.5 0.737
#> 9 y[2,3] 8.5 -7.72 27.5 0.737
#> 10 y[3,3] 9.5 -8.57 28.5 0.737
An nlists
object can be converted to an mcmc.list
object and a
term_frame
.
as_mcmc_list(nlists)
#> [[1]]
#> Markov Chain Monte Carlo (MCMC) output:
#> Start = 1
#> End = 4
#> Thinning interval = 1
#> x y[1,1] y[2,1] y[3,1] y[1,2] y[2,2] y[3,2] y[1,3] y[2,3] y[3,3]
#> [1,] 1 1 2 3 4 5 6 7 8 9
#> [2,] -2 2 3 4 5 6 7 8 9 10
#> [3,] 10 22 23 24 25 26 27 28 29 30
#> [4,] -100 -2 -3 -4 -5 -6 -7 -8 -9 -10
#>
#> attr(,"class")
#> [1] "mcmc.list"
as_term_frame(nlists)
#> term sample value
#> 1 x 1 1
#> 2 y[1,1] 1 1
#> 3 y[2,1] 1 2
#> 4 y[3,1] 1 3
#> 5 y[1,2] 1 4
#> 6 y[2,2] 1 5
#> 7 y[3,2] 1 6
#> 8 y[1,3] 1 7
#> 9 y[2,3] 1 8
#> 10 y[3,3] 1 9
#> 11 x 2 -2
#> 12 y[1,1] 2 2
#> 13 y[2,1] 2 3
#> 14 y[3,1] 2 4
#> 15 y[1,2] 2 5
#> 16 y[2,2] 2 6
#> 17 y[3,2] 2 7
#> 18 y[1,3] 2 8
#> 19 y[2,3] 2 9
#> 20 y[3,3] 2 10
#> 21 x 3 10
#> 22 y[1,1] 3 22
#> 23 y[2,1] 3 23
#> 24 y[3,1] 3 24
#> 25 y[1,2] 3 25
#> 26 y[2,2] 3 26
#> 27 y[3,2] 3 27
#> 28 y[1,3] 3 28
#> 29 y[2,3] 3 29
#> 30 y[3,3] 3 30
#> 31 x 4 -100
#> 32 y[1,1] 4 -2
#> 33 y[2,1] 4 -3
#> 34 y[3,1] 4 -4
#> 35 y[1,2] 4 -5
#> 36 y[2,2] 4 -6
#> 37 y[3,2] 4 -7
#> 38 y[1,3] 4 -8
#> 39 y[2,3] 4 -9
#> 40 y[3,3] 4 -10
An nlists
object can have its chains split or collapsed.
split_chains(nlists)
#> $x
#> [1] -0.5
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 1.5 4.5 7.5
#> [2,] 2.5 5.5 8.5
#> [3,] 3.5 6.5 9.5
#>
#> an nlists object with 2 chains of 2 nlist objects each with 2 numeric elements
To install the release version from CRAN.
install.packages("nlist")
The website for the release version is at https://poissonconsulting.github.io/nlist/.
To install the development version from GitHub
# install.packages("remotes")
remotes::install_github("poissonconsulting/nlist")
or from r-universe.
install.packages("nlist", repos = c("https://poissonconsulting.r-universe.dev", "https://cloud.r-project.org"))
Please report any issues.
Pull requests are always welcome.
Please note that the nlist project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.