Skip to content

Commit

Permalink
Filling Cubes in a Few Lines of Code (agda#1053)
Browse files Browse the repository at this point in the history
* done

* fix Everything

* update

* add an example

* fix

* typos

* alignment
  • Loading branch information
kangrongji authored Sep 18, 2023
1 parent 85f8a71 commit f3cf89d
Show file tree
Hide file tree
Showing 2 changed files with 120 additions and 0 deletions.
1 change: 1 addition & 0 deletions Cubical/Foundations/Everything.agda
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ open import Cubical.Foundations.Equiv.BiInvertible public
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.HLevels public
open import Cubical.Foundations.HLevels.Extend
open import Cubical.Foundations.Path public
open import Cubical.Foundations.Pointed public
open import Cubical.Foundations.RelationalStructure public
Expand Down
119 changes: 119 additions & 0 deletions Cubical/Foundations/HLevels/Extend.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
{-
Kan Operations for n-Truncated Types
It provides an efficient way to construct cubes in truncated types.
A draft note on this can be found online at
https://kangrongji.github.io/files/extend-operations.pdf
-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.HLevels.Extend where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels

private
variable
: Level


-- For conveniently representing the boundary of cubes
: I I
∂ i = i ∨ ~ i


-- TODO: Write a macro to generate these stuff.

module _
{X : Type ℓ}
(h : isContr X)
: I} where

extend₀ :
(x : Partial _ X)
X [ ϕ ↦ x ]
extend₀ = extend h _


module _
{X : I Type ℓ}
(h : (i : I) isProp (X i))
: I} where

extend₁ :
(x : (i : I) Partial _ (X i))
(i : I) X i [ ϕ ∨ ∂ i ↦ x i ]
extend₁ x i = inS (hcomp (λ j λ
{ (ϕ = i1) h i (bottom i) (x i 1=1) j
; (i = i0) h i (bottom i) (x i 1=1) j
; (i = i1) h i (bottom i) (x i 1=1) j })
(bottom i))
where
bottom : (i : I) X i
bottom i = isProp→PathP h (x i0 1=1) (x i1 1=1) i


module _
{X : I I Type}
(h : (i j : I) isSet (X i j))
: I} where

extend₂ :
(x : (i j : I) Partial _ (X i j))
(i j : I) X i j [ ϕ ∨ ∂ i ∨ ∂ j ↦ x i j ]
extend₂ x i j = inS (outS (extend₁PathP p i) j)
where
isOfHLevel₁PathP : (i : I) (a : X i i0) (b : X i i1)
isProp (PathP (λ j X i j) a b)
isOfHLevel₁PathP i = isOfHLevelPathP' 1 (h i i1)

extend₁PathP :
(p : (i : I) Partial _ (PathP _ (x i i0 1=1) (x i i1 1=1)))
(i : I) PathP _ (x i i0 1=1) (x i i1 1=1) [ ϕ ∨ ∂ i ↦ p i ]
extend₁PathP = extend₁ (λ i isOfHLevel₁PathP i (x i i0 1=1) (x i i1 1=1)) {ϕ}

p : (i : I) Partial _ (PathP _ (x i i0 1=1) (x i i1 1=1))
p i (i = i0) = λ j x i j 1=1
p i (i = i1) = λ j x i j 1=1
p i (ϕ = i1) = λ j x i j 1=1


module _
(X : I I I Type)
(h : (i j k : I) isGroupoid (X i j k))
: I} where

extend₃ :
(x : (i j k : I) Partial _ (X i j k))
(i j k : I) X i j k [ ϕ ∨ ∂ i ∨ ∂ j ∨ ∂ k ↦ x i j k ]
extend₃ x i j k = inS (outS (extend₂PathP p i j) k)
where
isOfHLevel₂PathP : (i j : I) (a : X i j i0) (b : X i j i1)
isSet (PathP (λ k X i j k) a b)
isOfHLevel₂PathP i j = isOfHLevelPathP' 2 (h i j i1)

extend₂PathP :
(p : (i j : I) Partial _ (PathP _ (x i j i0 1=1) (x i j i1 1=1)))
(i j : I) PathP _ (x i j i0 1=1) (x i j i1 1=1) [ ϕ ∨ ∂ i ∨ ∂ j ↦ p i j ]
extend₂PathP = extend₂ (λ i j isOfHLevel₂PathP i j (x i j i0 1=1) (x i j i1 1=1)) {ϕ}

p : (i j : I) Partial _ (PathP (λ k X i j k) (x i j i0 1=1) (x i j i1 1=1))
p i j (i = i0) = λ k x i j k 1=1
p i j (i = i1) = λ k x i j k 1=1
p i j (j = i0) = λ k x i j k 1=1
p i j (j = i1) = λ k x i j k 1=1
p i j (ϕ = i1) = λ k x i j k 1=1


private
-- An example showing how to directly fill 3-cubes in an h-proposition.
-- It can help when one wants to pattern match certain HITs towards some n-types.

isProp→Cube :
{X : Type ℓ} (h : isProp X)
(x : (i j k : I) Partial _ X)
(i j k : I) X [ ∂ i ∨ ∂ j ∨ ∂ k ↦ x i j k ]
isProp→Cube h x i j =
extend₁ (λ _ h) {∂ i ∨ ∂ j} (x i j)

0 comments on commit f3cf89d

Please sign in to comment.