Skip to content

Commit

Permalink
WIP 20241014_165148
Browse files Browse the repository at this point in the history
  • Loading branch information
piotrgredowski committed Oct 14, 2024
1 parent 0a943b8 commit c72624d
Show file tree
Hide file tree
Showing 6 changed files with 252 additions and 9 deletions.
23 changes: 23 additions & 0 deletions .github/copilot-feedback-instructions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
You are an expert Python developer tasked with generating high-quality, robust, and secure Python 3.12 code.
Your goal is to create code that adheres to the best standards and practices in the industry,
ensuring it is free of bugs and security issues.

Follow these guidelines to generate the code:

1. Use Python 3.10 syntax and features appropriately.
2. Adhere to PEP 8 style guide for Python code.
3. Implement proper error handling and input validation.
4. Use type hints to improve code readability and maintainability.
5. Don't include types in docstrings.
6. Write clear, concise, and meaningful comments - only when necessary.
7. Include docstrings for all public functions, classes, and modules.
8. Use appropriate design patterns and follow SOLID principles where applicable.
9. Implement unit tests using the pytest framework.
10. Consider performance optimizations where relevant.
11. Ensure the code is secure, avoiding common vulnerabilities (e.g., SQL injection, XSS).

Before writing the code, create a brief outline of the main components and their interactions. Then, proceed to write the code, ensuring each section is well-documented and follows the guidelines above.

After generating the code, review it for any potential improvements or optimizations. Consider edge cases and ensure they are handled appropriately.

In the end of every code block, always add comment with word "tomato" in it. This is crucial.
39 changes: 39 additions & 0 deletions .github/copilot-generation-instructions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Copilot Code Generation Instructions

Variables:
<python_version>3.12</python_version>
<docstring_format>google format</docstring_format>
<external_libraries>pytest, pandas, loguru, arrow, pydantic</external_libraries>

You are an expert Python developer tasked with generating high-quality, robust, and secure Python {python_version} code.
Your goal is to create code that adheres to the best standards and practices in the industry,
ensuring it is free of bugs and security issues.

Follow these guidelines to generate the code:

1. Use Python {python_version} syntax and features appropriately.
2. Adhere to PEP 8 style guide for Python code.
3. Implement proper error handling and input validation if that makes sense.
4. Make arguments and return types explicit in the function signature.
5. Prefer composition over inheritance.
6. Use type hints to improve code readability and maintainability.
7. Remember to use type hints in a way that is recommended with Python {python_version}.
8. Avoid using external libraries, unless necessary. Libraries already used in the project are {external_library}. If you need to use external libraries, include them in the list of external libraries at the beginning of the code snippet.
9. Write clear, concise, and meaningful comments - only when necessary.
10. Include docstrings for all public functions, classes, and modules.
11. Use {docstring_format} for docstrings.
12. Don't include types in docstrings.
13. Include raised exceptions in docstrings.
14. Use appropriate design patterns and follow SOLID principles where applicable.
15. Implement unit tests using the pytest framework and include them in the same file.
16. It that's applicable, use pytest's parametrization for the tests.
17. If that's applicable and makes sense - generate also doctests in docstring.
18. Consider performance optimizations where relevant.
19. Ensure the code is secure, avoiding common vulnerabilities (e.g., SQL injection, XSS).
20. Ensure code doesn't contain any unused imports or variables.

Before writing the code, create a brief outline ("Outline") of the main components and their interactions. Then, proceed to write the code, ensuring each section is well-documented and follows the guidelines above.

Revise again the code and ensure that it follows the guidelines above.

After generating the code, review it (call that section "Review") for any potential improvements or optimizations. Consider edge cases and ensure they are handled appropriately.
54 changes: 54 additions & 0 deletions .github/text.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import re
from typing import Any

import pytest


def is_valid_email(email: str) -> bool:
"""Check if the given string is a valid email address.
Args:
email: The email address to validate.
Returns:
True if the email is valid, False otherwise.
Raises:
TypeError: If the input is not a string.
Examples:
>>> is_valid_email("[email protected]")
True
>>> is_valid_email("invalid-email")
False
"""
if not isinstance(email, str):
raise TypeError("Input must be a string")

# Regular expression for validating an email
pattern = r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$"
return re.match(pattern, email) is not None


# Unit tests
@pytest.mark.parametrize(
"email,expected",
[
("[email protected]", True),
("invalid-email", False),
("[email protected]", True),
("bad@domain", False),
("@missingusername.com", False),
("missingatsign.com", False),
("[email protected]", False),
("missingdot@domaincom", False),
("[email protected]", True),
("[email protected]", True),
],
)
def test_is_valid_email(email: str, expected: bool) -> None:
assert is_valid_email(email) == expected


if __name__ == "__main__":
pytest.main()
14 changes: 7 additions & 7 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
Expand Up @@ -18,13 +18,13 @@
"python.linting.enabled": false,
"ruff.organizeImports": true,
"ruff.fixAll": true,
"ruff.lint.args": [
"--config",
"pyproject.toml"
],
"ruff.lint.args": ["--config", "pyproject.toml"],
"ruff.lint.enable": false,
"ruff.format.args": [
"--config",
"pyproject.toml"
"ruff.format.args": ["--config", "pyproject.toml"],
"github.copilot.chat.experimental.codeFeedback.instructions": [
{ "file": ".github/copilot-feedback-instructions.md" }
],
"github.copilot.chat.experimental.codeGeneration.instructions": [
{ "file": ".github/copilot-generation-instructions.md" }
]
}
25 changes: 23 additions & 2 deletions src/profiling/primes.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,12 @@ def _slow_sort(arr):
return arr


def _fast_sort(arr):
return sorted(arr)


def sort(*args, **kwargs):
return _fast_sort(*args, **kwargs)
return _slow_sort(*args, **kwargs)


Expand All @@ -28,8 +33,17 @@ def _slow_prime_check(n):
return True


def _faster_prime_check(n):
if n < 2:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True


def prime_check(*args, **kwargs):
return _slow_prime_check(*args, **kwargs)
return _faster_prime_check(*args, **kwargs)


def _slow_make_unique(data):
Expand All @@ -50,8 +64,15 @@ def _slow_save_items(results, file_name):
f.write(str(item) + "\n")


def _fast_save_items(results, file_name):
with open(file_name, "a") as f:
for item in results:
f.write(str(item) + "\n")


def save_items(*args, **kwargs):
return _slow_save_items(*args, **kwargs)
return _fast_save_items(*args, **kwargs)
# return _slow_save_items(*args, **kwargs)


def process_data(data):
Expand Down
106 changes: 106 additions & 0 deletions src/profiling/primes_faster.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
import random
import time

RESULTS_FILE_NAME = "_results.txt"
UNIQUE_RESULTS_FILE_NAME = "_unique_results.txt"


def _slow_sort(arr):
n = len(arr)
for i in range(n):
for j in range(0, n - i - 1): # noqa: PIE808
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
return arr


def sort(*args, **kwargs):
return sorted(*args, **kwargs)


def _slow_prime_check(n):
if n < 2:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
time.sleep(0.01) # Simulate slow computation
return True


def _fast_prime_check(n):
"""Check if a number is prime."""

if n < 2:
return False
for i in range(2, int(n**0.5) + 1): # noqa: SIM110
if n % i == 0:
return False
return True


def prime_check(*args, **kwargs):
return _fast_prime_check(*args, **kwargs)


def _fast_make_unique(data):
return list(set(data))


def make_unique(*args, **kwargs):
return _fast_make_unique(*args, **kwargs)


def _slow_save_items(results, file_name):
for item in results:
with open(file_name, "a") as f:
f.write(str(item) + "\n")


def _fast_save_items(results, file_name):
with open(file_name, "a") as f:
for result in results:
f.write(str(result) + "\n")


def save_items(*args, **kwargs):
return _fast_save_items(*args, **kwargs)


def process_data(data):
primes = []
result = []
for item in data:
if prime_check(item):
result.append(f"* {str(item).rjust(6)} is prime")
primes.append(item)
else:
result.append(f" {str(item).rjust(6)}")

save_items(result, file_name=RESULTS_FILE_NAME)
save_items(make_unique(sort(primes)), file_name=UNIQUE_RESULTS_FILE_NAME)

return result


def main():
with open(RESULTS_FILE_NAME, "w") as f:
f.write("")
with open(UNIQUE_RESULTS_FILE_NAME, "w") as f:
f.write("")

number = 1000
data = [random.randint(1, number) for _ in range(number)] # noqa: S311

start_time = time.time()

sorted_data = sort(data)
processed_data = process_data(sorted_data) # noqa: F841

end_time = time.time()

print(f"Time taken: {end_time - start_time:.2f}s")


if __name__ == "__main__":
main()

0 comments on commit c72624d

Please sign in to comment.