NeuGraspNet: Learning Any-View 6DoF Robotic Grasping in Cluttered Scenes via Neural Surface Rendering
Authors: Snehal Jauhri, Ishikaa Lunawat, and Georgia Chalvatzaki
Institution: PEARL Lab, TU Darmstadt, Germany
Published at: Robotics: Science and Systems, 2024
Project Site: https://sites.google.com/view/neugraspnet
Paper: https://arxiv.org/pdf/2306.07392
- 11th July 2024: Initial release with pre-trained weights and simulated grasping demos (DONE)
- September 2024: Dataset generation
- October 2024: Training, Inference & ROS package
Tested on Ubuntu 20.04 with an NVIDIA GPU (Recommended 8GB GPU VRAM or higher)
- Create a conda environment using the provided environment.yml file:
cd <this repo> conda env create -f environment.yml
- Create a new conda environment with Python 3.8 or higher:
conda create --name neugraspnet python=3.8
- Install requirements:
(Due to compatibility issues with newer versions of open3d, sklearn installation needs to be enabled:)conda activate neugraspnet export SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True pip install -r requirements.txt
- Install torch-scatter based on pytorch version and cuda version (https://github.com/rusty1s/pytorch_scatter). For example:
pip install torch==1.13.0 torch-scatter==2.1.0 torchvision==0.14.0 -f https://data.pyg.org/whl/torch-1.13.0+cu117.html
- Install the neugraspnet package:
cd <this repo> pip install -e .
- Build the conv_occupancy_network dependency:
python neugraspnet/scripts/convonet_setup.py build_ext --inplace
- To run evaluations on the pile object dataset from VGN, run:
Modify the
cd neugraspnet/neugraspnet python -u scripts/test/sim_grasp_multiple.py --num-view 1 --object_set pile/test --scene pile --num-rounds 100 --model ./data/networks/neugraspnet_pile_efficient.pt --resolution=64 --type neu_grasp_pn_deeper_efficient --qual-th 0.5 --max_grasp_queries_at_once 40 --result-path ./data/results/neu_grasp_pile_efficient --sim-gui
max_grasp_queries_at_once
command line arguement based on your available GPU memory. (For eg. If using an RTX 3090, usemax_grasp_queries_at_once= 40 or 60
) - To run evaluations on the egad object dataset (https://dougsm.github.io/egad/), run:
python -u scripts/test/sim_grasp_multiple.py --num-view 1 --object_set egad --scene egad --num-rounds 100 --model ./data/networks/neugraspnet_pile_efficient.pt --resolution=64 --type neu_grasp_pn_deeper_efficient --qual-th 0.5 --max_grasp_queries_at_once 40 --result-path ./data/results/neu_grasp_egad_efficient --sim-gui
- GPG (https://github.com/atenpas/gpg)
- Convolutional Occupancy Networks (https://github.com/autonomousvision/convolutional_occupancy_networks)
- UNISURF (https://github.com/autonomousvision/unisurf)
- GIGA (https://github.com/UT-Austin-RPL/GIGA)
- Edge-Grasp-Network (https://github.com/HaojHuang/Edge-Grasp-Network)
- VGN (https://github.com/ethz-asl/vgn)