Skip to content
/ fact Public

An implementation of "Fair Attribute Completion on Graph with Missing Attributes" paper. Accepted TMLR

License

Notifications You must be signed in to change notification settings

oxkitsune/fact

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reproducibility study of FairAC

An implementation of "Fair Attribute Completion on Graph with Missing Attributes" paper by D. Guo, Z. Chu, and S. Li.

To run experiments:

Install dependencies using conda

conda env create -f environment.yml

Code structure

The code is organised as follows:

  • dataset/ contains the dataset files
  • src/models/ contains PyTorch models for FairAC/FairGNN
  • experiments/ contains notebooks to run the experiments

Run the experiments

The experiments can be run using the notebooks in the experiments/ folder. The notebooks are self-explanatory and can be run in order to reproduce the results.

Evaluation of the provided model weights

We provide the pre-trained weights from our experiments in experiments/logs. These weights can be evaluated using the experiments/run_fair_ac.ipynb notebook. The notebook is self-explanatory and can be run to evaluate the model weights.

Deepwalk embeddings

Several deepwalk embeddings are provided already. If more are needed they can be created by running:

python src/create_deepwalk_emb.py

Results

Dataset Method M Acc ↑ AUC ↑ ΔSP ↓ ΔEO ↓ ΔSP+ΔEO ↓ Consistency ↑
NBA GCN 66.98 ± 1.18 76.15 ± 1.40 0.14 ± 0.13 0.57 ± 0.06 0.71 ± 0.18 2.64 ± 0.00
ALFR 64.3±1.3 71.5±0.3 2.3±0.9 3.2±1.5 5.5±2.4 -
ALFR-e 66.0±0.4 72.9±1.0 4.7±1.8 4.7±1.7 9.4±3.4 -
Debias 63.1±1.1 71.3±0.7 2.5±1.5 3.1±1.9 5.6±3.4 -
Debias-e 65.6±2.4 72.9±1.2 5.3±0.9 3.1±1.3 8.4±2.2 -
FCGE 66.0±1.5 73.6±1.5 2.9±1.0 3.0±1.2 5.9±2.2 -
FairGNN 68.39 ± 3.12 74.29 ± 1.19 2.81 ± 4.01 3.00 ± 4.07 5.81 ± 8.08 2.64 ± 0.00
FairAC (Ours) 66.51 ± 1.09 75.69 ± 1.31 0.09 ± 0.08 0.10 ± 0.00 0.19 ± 0.08 2.64 ± 0.00
Pokec-z GCN 65.10 ± 0.24 68.42 ± 0.12 1.72 ± 1.17 1.37 ± 0.51 3.08 ± 1.68 41.35 ± 0.01
ALFR 65.4±0.4 71.3±0.3 2.8±0.5 1.1±0.4 3.9±0.9 -
ALFR-e 68.0±0.6 74.0±0.7 5.8±0.4 2.8±0.8 8.6±1.2 -
Debias 65.2±0.7 71.4±0.6 1.9±0.6 1.9±0.4 3.8±1.0 -
Debias-e 67.5±0.7 74.2±0.7 4.7±1.0 3.0±1.4 7.7±2.4 -
FCGE 65.9±0.2 71.0±0.2 3.1±0.5 1.7±0.6 4.8±1.1 -
FairGNN 68.16 ± 0.59 75.67 ± 0.52 1.56 ± 0.45 3.17 ± 1.07 4.73 ± 1.47 41.35 ± 0.01
FairAC (Ours) 65.33 ± 0.30 71.20 ± 1.74 0.55 ± 0.10 0.13 ± 0.15 0.68 ± 0.09 41.33 ± 0.00
Pokec-n GCN 67.88 ± 1.46 72.86 ± 1.44 3.22 ± 1.29 5.93 ± 2.76 9.15 ± 4.05 45.93 ± 0.00
ALFR 63.1±0.6 67.7±0.5 3.05±0.5 3.9±0.6 3.95±1.1 -
ALFR-e 66.2±0.4 71.9±1.0 4.1±1.8 4.6±1.7 8.7±3.5 -
Debias 62.6±1.1 67.9±0.7 2.4±1.5 2.6±1.9 5.0±3.4 -
Debias-e 65.6±2.4 71.7±1.2 3.6±0.9 4.4±1.3 8.0±2.2 -
FCGE 64.8±1.5 69.5±1.5 4.1±1.0 5.5±1.2 9.6±2.2 -
FairGNN 67.06 ± 0.37 71.58 ± 2.58 0.55 ± 0.50 0.30 ± 0.20 0.85 ± 0.31 45.93 ± 0.00
FairAC (Ours) 67.00 ± 1.93 72.57 ± 1.68 0.11 ± 0.06 0.47 ± 0.81 0.58 ± 0.76 45.94 ± 0.02

Table 1: Comparison of FairAC with FairGNN on the nba, pokec-z and pokec-n dataset.

  • The methods are applied on the GCN classifier, and the values for the baselines are taken from the original paper.
  • The values for FairAC, FairGNN and GCN are taken from our experiments, that can be recreated using the notebooks under experiments/.
  • The values consist of the mean and standard deviation of the metric over 3 runs on the seeds 40, 41 and 42.
  • The best results are denoted in bold.

About

An implementation of "Fair Attribute Completion on Graph with Missing Attributes" paper. Accepted TMLR

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published