Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hasse-Schmidt derivatives 2.0 #4272

Draft
wants to merge 9 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 52 additions & 0 deletions docs/oscar_references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1067,6 +1067,58 @@ @Book{Ful98
doi = {10.1007/978-1-4612-1700-8}
}

@Article{FKRS21,
author = {Fruehbis-Krueger, Anne and Ristau, Lukas and Schober, Bernd},
title = {Embedded desingularization for arithmetic surfaces -- toward a parallel implementation},
year = {2021},
pages = {32},
eprint = {1712.08131},
primaryClass = {math.AG},
doi = {https://doi.org/10.1090/mcom/3624}
}

@Article{Hasse1937,
author = {Hasse, H.},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {algebraic function fields; higher differential quotients},
pages = {215-223},
title = {Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. (Nach einer brieflichen Mitteilung von F.K. Schmidt in Jena).},
url = {http://eudml.org/doc/150015},
volume = {177},
year = {1937}
}

@Book{Cut04,
title = {Resolution of Singularities},
author = {Cutkosky, S.D.},
isbn = {9780821872383},
series = {Graduate studies in mathematics},
url = {https://books.google.de/books?id=OkAppJ7dXsgC},
publisher = {American Mathematical Soc.}
}

@Article{Haze11,
author = {Hazewinkel, Michiel},
title = {Hasse-Schmidt Derivations and the Hopf Algebra of Non-Commutative Symmetric Functions},
journal = {Axioms},
volume = {1},
year = {2012},
number = {2},
pages = {149--154},
issn = {2075-1680},
doi = {10.3390/axioms1020149}
}

@Misc{Haze11,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This seems to be published as https://doi.org/10.3390/axioms1020149, please cite this instead.

title = {Hasse-Schmidt derivations and the Hopf algebra of noncommutative symmetric functions},
author = {Michiel Hazewinkel},
year = {2011},
eprint = {1110.6108},
archivePrefix = {arXiv},
primaryClass = {math.RA},
url = {https://arxiv.org/abs/1110.6108}
}

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

bibtool is unhappy about the formatting of this file. Please see https://docs.oscar-system.org/dev/DeveloperDocumentation/documentation/#Updating-the-bibliography for more information about how to format the bibliography

@Article{GH12,
author = {Grimm, Thomas W. and Hayashi, Hirotaka},
title = {F-theory fluxes, chirality and Chern-Simons theories},
Expand Down
162 changes: 162 additions & 0 deletions experimental/HasseSchmidt/src/HasseSchmidt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
export hasse_derivatives

### We consider Hasse-Schmidt derivatives of polynomials as seen in
###
### [FKRS21](@cite) Fruehbis-Krueger, Ristau, Schober: 'Embedded desingularization for arithmetic surfaces -- toward a parallel implementation'
###
### This is a special case of a more general definition of a Hasse-Schmidt derivative. These more general and rigorous definitions can be found in the following sources:
###
### [Cut04](@cite) Cutkosky: 'Resolution of Singularities'
### [Haze11](@cite) Michiel Hazewinkel: 'Hasse-Schmidt derivations and the Hopf algebra of noncommutative symmetric functions'
###

################################################################################
### HASSE-SCHMIDT derivatives for single polynomials

@doc raw"""
hasse_derivatives(f::MPolyRingElem)

Return a list of Hasse-Schmidt derivatives of `f`, each with a multiindex `[a_1, ..., a_n]`, where `a_i` describes the number of times `f` was derived w.r.t. the `i`-th variable.

Hasse-Schmidt derivatives as seen in [FKRS21](@cite).
For more general and rigorous definition see [Cut04](@cite) or [Haze11](@cite).

# Examples
```jldoctest
julia> R, (x, y) = polynomial_ring(ZZ, ["x", "y"]);

julia> f = 5*x^2 + 3*y^5;

julia> hasse_derivatives(f)
8-element Vector{Vector{Any}}:
[[0, 5], 3]
[[0, 4], 15*y]
[[0, 3], 30*y^2]
[[2, 0], 5]
[[0, 2], 30*y^3]
[[1, 0], 10*x]
[[0, 1], 15*y^4]
[[0, 0], 5*x^2 + 3*y^5]
```
"""
function hasse_derivatives(f::MPolyRingElem)
R = parent(f)
# x = gens(R)
# n = ngens(R)
Rtemp, t = polynomial_ring(R, :t => 1:ngens(R))
F = evaluate(f, gens(R) + t)
return [[degrees(monomial(term, 1)), coeff(term, 1)] for term in terms(F)]
end

function hasse_derivatives(f::MPolyQuoRingElem)
error("Not implemented. For experts, however, there is an internal function called _hasse_derivatives, which works for elements of type MPolyQuoRingElem")
end

function hasse_derivatives(f::Oscar.MPolyLocRingElem)
error("Not implemented. For experts, however, there is an internal function called _hasse_derivatives, which works for elements of type Oscar.MPolyLocRingElem")
end

function hasse_derivatives(f::Oscar.MPolyQuoLocRingElem)
error("Not implemented. For experts, however, there is an internal function called _hasse_derivatives, which works for elements of type Oscar.MPolyQuoLocRingElem")
end




################################################################################
### internal functions for expert use

# MPolyQuoRingElem (internal, expert use only)
@doc raw"""
_hasse_derivatives(f::MPolyQuoRingElem)

Return a list of Hasse-Schmidt derivatives of lift of `f`, each with a multiindex `[a_1, ..., a_n]`, where `a_i` describes the number of times `f` was derived w.r.t. the `i`-th variable.

# Examples
```jldoctest
julia> R, (x, y) = polynomial_ring(ZZ, ["x", "y"]);

julia> I = ideal(R, [x - 1]);

julia> RQ, phi = quo(R, I);

julia> f = phi(2*y^4);

julia> Oscar._hasse_derivatives(f)
5-element Vector{Vector{Any}}:
[[0, 4], 2]
[[0, 3], 8*y]
[[0, 2], 12*y^2]
[[0, 1], 8*y^3]
[[0, 0], 2*y^4]
```
"""
function _hasse_derivatives(f::MPolyQuoRingElem)
return hasse_derivatives(lift(f))
end

# Oscar.MPolyLocRingElem (internal, expert use only)
@doc raw"""
_hasse_derivatives(f::Oscar.MPolyLocRingElem)

Return a list of Hasse-Schmidt derivatives of numerator of `f`, each with a multiindex `[a_1, ..., a_n]`, where `a_i` describes the number of times `f` was derived w.r.t. the `i`-th variable.

# Examples
```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);

julia> m = ideal(R, [x - 3, y - 2, z + 1]);

julia> U = complement_of_prime_ideal(m);

julia> Rloc, phi = localization(R, U);

julia> f = phi(2*z^5);

julia> Oscar._hasse_derivatives(f)
6-element Vector{Vector{Any}}:
[[0, 0, 5], 2]
[[0, 0, 4], 10*z]
[[0, 0, 3], 20*z^2]
[[0, 0, 2], 20*z^3]
[[0, 0, 1], 10*z^4]
[[0, 0, 0], 2*z^5]
```
"""
function _hasse_derivatives(f::Oscar.MPolyLocRingElem)
return hasse_derivatives(numerator(f))
end

# Oscar.MPolyQuoLocRingElem (internal, expert use only)
@doc raw"""
_hasse_derivatives(f::Oscar.MPolyQuoLocRingElem)

Return a list of Hasse-Schmidt derivatives of lifted numerator of `f`, each with a multiindex `[a_1, ..., a_n]`, where `a_i` describes the number of times `f` was derived w.r.t. the `i`-th variable.

# Examples
```jldoctest
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);

julia> I = ideal(R, [x^3 - 1]);

julia> RQ, phi = quo(R, I);

julia> p = ideal(R, [z]);

julia> U = complement_of_prime_ideal(p);

julia> RQL, iota = localization(RQ, U);

julia> f = iota(phi(4*y^3));

julia> Oscar._hasse_derivatives(f)
4-element Vector{Vector{Any}}:
[[0, 3, 0], 4]
[[0, 2, 0], 12*y]
[[0, 1, 0], 12*y^2]
[[0, 0, 0], 4*y^3]
```
"""
function _hasse_derivatives(f::Oscar.MPolyQuoLocRingElem)
return hasse_derivatives(lifted_numerator(f))
end
117 changes: 117 additions & 0 deletions experimental/HasseSchmidt/test/runtests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
@testset "hasse_derivatives" begin
R, (x, y) = polynomial_ring(ZZ, ["x", "y"]);

result_a1 = [ [[3, 0], 1],
[[2, 0], 3*x],
[[1, 0], 3*x^2],
[[0, 0], x^3]]
@test result_a1 == hasse_derivatives(x^3)

result_a2 = [ [[0, 5], 3],
[[0, 4], 15*y],
[[0, 3], 30*y^2],
[[2, 0], 5],
[[0, 2], 30*y^3],
[[1, 0], 10*x],
[[0, 1], 15*y^4],
[[0, 0], 5*x^2 + 3*y^5]]
@test result_a2 == hasse_derivatives(5*x^2 + 3*y^5)

result_a3 = [ [[2, 3], 1],
[[2, 2], 3*y],
[[1, 3], 2*x],
[[2, 1], 3*y^2],
[[1, 2], 6*x*y],
[[0, 3], x^2],
[[2, 0], y^3],
[[1, 1], 6*x*y^2],
[[0, 2], 3*x^2*y],
[[1, 0], 2*x*y^3],
[[0, 1], 3*x^2*y^2],
[[0, 0], x^2*y^3]]
@test result_a3 == hasse_derivatives(x^2*y^3)

result_a4 = [ [[4, 0], 1],
[[3, 0], 4*x],
[[2, 0], 6*x^2],
[[0, 2], 1],
[[1, 0], 4*x^3],
[[0, 1], 2*y],
[[0, 0], x^4 + y^2]]
@test result_a4 == hasse_derivatives(x^4 + y^2)

result_a5 = [ [[2, 1], 1],
[[1, 2], 1],
[[2, 0], y],
[[1, 1], 2*x + 2*y],
[[0, 2], x],
[[1, 0], 2*x*y + y^2],
[[0, 1], x^2 + 2*x*y],
[[0, 0], x^2*y + x*y^2]]
@test result_a5 == hasse_derivatives(x^2*y + x*y^2)
end

@testset "hasse_derivatives finite fields" begin
R, (x, y, z) = polynomial_ring(GF(3), ["x", "y", "z"]);

result_b1 = [ [[2, 0, 0], 1],
[[0, 2, 0], 1],
[[1, 0, 0], 2*x],
[[0, 1, 0], 2*y],
[[0, 0, 0], x^2 + y^2]]
@test result_b1 == hasse_derivatives(x^2 + y^2)

result_b2 = [ [[0, 0, 6], 1],
[[2, 1, 0], 1],
[[0, 0, 3], 2*z^3],
[[2, 0, 0], y],
[[1, 1, 0], 2*x],
[[1, 0, 0], 2*x*y],
[[0, 1, 0], x^2],
[[0, 0, 0], x^2*y + z^6]]
@test result_b2 == hasse_derivatives(x^2*y + z^6)
end

@testset "_hasse_derivatives MPolyQuoRingElem" begin
R, (x, y, z) = polynomial_ring(ZZ, ["x", "y", "z"]);
I = ideal(R, [x^2 - 1]);
RQ, _ = quo(R, I);

result_c1 = [ [[0, 4, 0], 3],
[[0, 3, 0], 12*y],
[[0, 2, 0], 18*y^2],
[[0, 1, 0], 12*y^3],
[[0, 0, 0], 3*y^4]]
@test result_c1 == Oscar._hasse_derivatives(RQ(3y^4))
end

@testset "_hasse_derivatives Oscar.MPolyLocRingElem" begin
R, (x, y, z) = polynomial_ring(ZZ, ["x", "y", "z"]);
m = ideal(R, [x, y, z]); # max ideal
U = complement_of_prime_ideal(m);
RL, _ = localization(R, U);

result_d1 = [ [[3, 0, 0], 5],
[[2, 0, 0], 15*x],
[[1, 0, 0], 15*x^2],
[[0, 0, 0], 5*x^3]]
@test result_d1 == Oscar._hasse_derivatives(RL(5x^3))
end

@testset "_hasse_derivatives Oscar.MPolyQuoLocRingElem" begin
R, (x, y, z) = polynomial_ring(ZZ, ["x", "y", "z"]);
I = ideal(R, [x^2 - 1]);
RQ, _ = quo(R, I);
m = ideal(R, [x, y, z]); # max ideal
U = complement_of_prime_ideal(m);
RQL, _ = localization(RQ, U);

result_e1 = [ [[0, 0, 5], 2],
[[0, 0, 4], 10*z],
[[0, 0, 3], 20*z^2],
[[0, 0, 2], 20*z^3],
[[0, 0, 1], 10*z^4],
[[0, 0, 0], 2*z^5]]
@test result_e1 == Oscar._hasse_derivatives(RQL(2z^5))
end

Loading