Skip to content

Commit

Permalink
[FTheoryTools] Implement method for well-quantized G4-fluxes
Browse files Browse the repository at this point in the history
  • Loading branch information
HereAround committed Nov 7, 2024
1 parent 50d2662 commit 7887fe0
Show file tree
Hide file tree
Showing 4 changed files with 523 additions and 0 deletions.
1 change: 1 addition & 0 deletions experimental/FTheoryTools/src/FTheoryTools.jl
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ include("G4Fluxes/constructors.jl")
include("G4Fluxes/attributes.jl")
include("G4Fluxes/properties.jl")
include("G4Fluxes/special_attributes.jl")
include("G4Fluxes/special-intersection-theory.jl")

include("Serialization/tate_models.jl")
include("Serialization/weierstrass_models.jl")
Expand Down
299 changes: 299 additions & 0 deletions experimental/FTheoryTools/src/G4Fluxes/special-intersection-theory.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,299 @@
# ---------------------------------------------------------------------------------------------------------
# (1) Compute the intersection product of an algebraic cycle with a hypersurface.
# ---------------------------------------------------------------------------------------------------------

function sophisticated_intersection_product(v::NormalToricVariety, indices::NTuple{4, Int64}, hypersurface_equation::MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}, inter_dict::Dict{NTuple{4, Int64}, ZZRingElem}, s_inter_dict::Dict{String, ZZRingElem}, data::NamedTuple)

# (A) Have we computed this intersection number in the past? If so, just use that result...
if haskey(inter_dict, indices)
return inter_dict[indices]
end

# (B) Get the indices of the variables that we try to intersect and, by virtue of the SR-ideal, intersect trivially
for sr_set in data.sr_ideal_pos
if is_subset(sr_set, indices)
inter_dict[indices] = ZZ(0)
return ZZ(0)
end
end

# (C) Deal with self-intersection and should-never-happen case.
variable_pos = Set(indices)
if length(variable_pos) < 4 && length(variable_pos) >= 1
return intersection_from_equivalent_cycle(v, indices, hypersurface_equation, inter_dict, s_inter_dict, data)
end
if length(variable_pos) == 0
println("WEIRD! THIS SHOULD NEVER HAPPEN! INFORM THE AUTHORS!")
println("")
end


# (D) Deal with transverse intersection...

# D.1 Work out the intersection locus in detail.
pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations = Oscar._reduce_hypersurface_equation(v, hypersurface_equation, indices, data)

# D.2 If pt == 0, then we are not looking at a transverse intersection. So take an equivalent cycle and try again...
if is_zero(pt_reduced)
return intersection_from_equivalent_cycle(v, indices, hypersurface_equation, inter_dict, s_inter_dict, data)
end

# D.3 If pt is constant and non-zero, then the intersection is trivial.
if is_constant(pt_reduced) && is_zero(pt_reduced) == false
inter_dict[indices] = ZZ(0)
return ZZ(0)
end

# D.4 Helper function for the cases below
function has_one_and_rest_zero(vec)
return count(==(1), vec) == 1 && all(x -> x == 0 || x == 1, vec)
end

# C.5 Cover a case that seems to appear frequently for our investigation:
# pt_reduced of the form a * x + b * y for non-zero number a,b and remaining variables x, y subject to a reduced SR generator x * y and scaling relation [1,1].
# This will thus always give exactly one solution (x = 1, y = -a/b), and so the intersection number is one.
if length(gs_reduced) == 1 && length(remaining_vars) == 2
mons_list = collect(monomials(pt_reduced))
if length(mons_list) == 2
if all(x -> x != 0, collect(coefficients(pt_reduced)))
exps_list = [collect(exponents(k))[1] for k in mons_list]
if has_one_and_rest_zero(exps_list[1]) && has_one_and_rest_zero(exps_list[2])
if gs_reduced[1] == remaining_vars[1] * remaining_vars[2]
if reduced_scaling_relations == matrix(ZZ, [[1,1]])
inter_dict[indices] = ZZ(1)
return ZZ(1)
end
end
end
end
end
end

# C.6 Cover a case that seems to appear frequently for our investigation:
# pt_reduced of the form a * x for non-zero number a and remaining variables x, y subject to a reduced SR generator x * y and scaling relation [*, != 0].
# This only gives the solution [0:1], so one intersection point.
if length(gs_reduced) == 1 && length(remaining_vars) == 2
mons_list = collect(monomials(pt_reduced))
if length(mons_list) == 1 && collect(coefficients(pt_reduced))[1] != 0
list_of_exps = collect(exponents(mons_list[1]))[1]
number_of_zeros = count(==(0), list_of_exps)
if number_of_zeros == length(list_of_exps) - 1
if gs_reduced[1] == remaining_vars[1] * remaining_vars[2]
if reduced_scaling_relations[1,1] != 0 && reduced_scaling_relations[1,2] != 0
highest_power = list_of_exps[findfirst(x -> x > 0, list_of_exps)]
if highest_power == 1
inter_dict[indices] = highest_power
return highest_power
end
end
end
end
end
end

# C.7 Cover a case that seems to appear frequently for our investigation. It looks as follows:
# pt_reduced = -5700*w8*w10
# remaining_vars = MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[w8, w10]
# gs_reduced = MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[w8*w10]
# reduced_scaling_relations = [1 1]
# This gives exactly two solutions, namely [0:1] and [1:0].
if length(gs_reduced) == 1 && length(remaining_vars) == 2
mons_list = collect(monomials(pt_reduced))
if length(mons_list) == 1 && mons_list[1] == remaining_vars[1] * remaining_vars[2]
if gs_reduced[1] == remaining_vars[1] * remaining_vars[2]
if reduced_scaling_relations == matrix(ZZ, [[1,1]])
inter_dict[indices] = 2
return 2
end
end
end
end

# C.8 Check if this was covered in our special cases
if haskey(s_inter_dict, string([pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations]))
numb = s_inter_dict[string([pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations])]
inter_dict[indices] = numb
return numb
end

# C.9 In all other cases, proceed via a rationally equivalent cycle
println("")
println("FOUND CASE THAT CANNOT YET BE DECIDED!")
println("$pt_reduced")
println("$remaining_vars")
println("$gs_reduced")
println("$indices")
println("$reduced_scaling_relations")
println("TRYING WITH EQUIVALENT CYCLE")
println("")
numb = intersection_from_equivalent_cycle(v, indices, hypersurface_equation, inter_dict, s_inter_dict, data)
s_inter_dict[string([pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations])] = numb
return numb

end



# ---------------------------------------------------------------------------------------------------------
# (2) Compute the intersection product from a rationally equivalent cycle.
# ---------------------------------------------------------------------------------------------------------

function intersection_from_equivalent_cycle(v::NormalToricVariety, indices::NTuple{4, Int64}, hypersurface_equation::MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}, inter_dict::Dict{NTuple{4, Int64}, ZZRingElem}, s_inter_dict::Dict{String, ZZRingElem}, data::NamedTuple)
coeffs_list, tuple_list = Oscar._rationally_equivalent_cycle(v, indices, data)
intersect_numb = 0
for k in 1:length(tuple_list)
if !is_zero(coeffs_list[k])
intersect_numb += coeffs_list[k] * sophisticated_intersection_product(v, tuple_list[k], hypersurface_equation, inter_dict, s_inter_dict, data)
end
end
@req is_integer(intersect_numb) "Should have expected to find only integer intersection numbers, but found $intersect_numb for $indices"
inter_dict[indices] = ZZ(intersect_numb)
return ZZ(intersect_numb)
end



# ---------------------------------------------------------------------------------------------------------
# (3) A function to reduce the hypersurface polynomial to {xi = 0} with i in indices
# ---------------------------------------------------------------------------------------------------------

function _reduce_hypersurface_equation(v::NormalToricVariety, p_hyper::MPolyRingElem, indices::NTuple{4, Int64}, data::NamedTuple)

# Set variables to zero in the hypersurface equation
vanishing_vars_pos = unique(indices)
new_p_hyper = divrem(p_hyper, data.gS[vanishing_vars_pos[1]])[2]
for m in 2:length(vanishing_vars_pos)
new_p_hyper = divrem(new_p_hyper, data.gS[vanishing_vars_pos[m]])[2]
end

# Is the resulting polynomial constant?
if is_constant(new_p_hyper)
return [new_p_hyper, [], [], zero_matrix(ZZ, 0, 0)]
end

# Identify the remaining variables
remaining_vars_pos = Set(1:length(data.gS))
for my_exps in data.sr_ideal_pos
len_my_exps = length(my_exps)
inter_len = count(idx -> idx in vanishing_vars_pos, my_exps)
if len_my_exps == inter_len + 1
delete!(remaining_vars_pos, my_exps[findfirst(idx -> !(idx in vanishing_vars_pos), my_exps)])
end
end
set_to_one_list = sort([k for k in 1:length(data.gS) if k remaining_vars_pos])
remaining_vars_pos = setdiff(collect(remaining_vars_pos), vanishing_vars_pos)
remaining_vars = [data.gS[k] for k in remaining_vars_pos]

# Extract remaining Stanley-Reisner ideal relations
sr_reduced = Vector{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}()
for k in 1:length(data.sr_ideal_pos)
if isdisjoint(set_to_one_list, data.sr_ideal_pos[k])
#for m in data.sr_ideal_pos[k] but not in vanishing_vars_pos
push!(sr_reduced, prod(data.gS[m] for m in data.sr_ideal_pos[k] if m vanishing_vars_pos))
#push!(sr_reduced, prod(data.gS[m] for m in data.sr_ideal_pos[k]))
end
end

# Identify the remaining scaling relations
prepared_scaling_relations = zero_matrix(ZZ, length(data.scalings[1]), length(set_to_one_list) + length(remaining_vars_pos))
for k in 1:(length(set_to_one_list) + length(remaining_vars_pos))
col = k <= length(set_to_one_list) ? data.scalings[set_to_one_list[k]] : data.scalings[remaining_vars_pos[k - length(set_to_one_list)]]
for l in 1:length(col)
prepared_scaling_relations[l, k] = col[l]
end
end
prepared_scaling_relations = hnf(prepared_scaling_relations)
reduced_scaling_relations = prepared_scaling_relations[length(set_to_one_list) + 1: nrows(prepared_scaling_relations), length(set_to_one_list) + 1 : ncols(prepared_scaling_relations)]

# Identify the final form of the reduced hypersurface equation, by setting all variables to one that we can
images = [k in remaining_vars_pos ? data.gS[k] : one(data.S) for k in 1:length(data.gS)]
pt_reduced = evaluate(new_p_hyper, images)

# Return the result
return [pt_reduced, sr_reduced, remaining_vars, reduced_scaling_relations]
end



# ---------------------------------------------------------------------------------------------------------
# (4) A function to find a rationally equivalent algebraic cycle.
# ---------------------------------------------------------------------------------------------------------

function _rationally_equivalent_cycle(v::NormalToricVariety, indices::NTuple{4, Int64}, data::NamedTuple)

# Identify positions of the single and triple variable
power_variable = indices[rand(1:length(indices))]
for k in Set(indices)
if count(==(k), indices) > 1
power_variable = k
break
end
end
other_variables = filter(!=(power_variable), indices)
pos_power_variable = findfirst(==(power_variable), indices)

# Let us simplify the problem by extracting the entries in the columns of single_variables and double_variables of the linear relation matrix
simpler_matrix = data.linear_relations[[other_variables..., power_variable], :]
b = zero_matrix(QQ, length(other_variables) + 1, 1)
b[nrows(b), 1] = 1
A = solve(simpler_matrix, b; side =:right)

# Now form the relation in case...
employed_relation = -sum((data.linear_relations[:, k] .* A[k]) for k in 1:5)
employed_relation[power_variable] = 0

# Populate `coeffs` and `tuples` that form rationally equivalent algebraic cycle
coeffs = Vector{QQFieldElem}()
tuples = Vector{NTuple{4, Int64}}()
for k in 1:length(employed_relation)
if employed_relation[k] != 0

# Form the new tuple
new_tuple = (indices[1:pos_power_variable-1]..., k, indices[pos_power_variable+1:end]...)
new_tuple = Tuple(sort(collect(new_tuple)))

pos = findfirst(==(new_tuple), tuples)
if pos !== nothing
coeffs[pos] += employed_relation[k]
else
push!(coeffs, employed_relation[k])
push!(tuples, Tuple(new_tuple))
end

#=
# If there are no repeated entries, just add this tuple...
if length(new_tuple) == length(Set(new_tuple))
pos = findfirst(==(new_tuple), tuples)
if pos !== nothing
coeffs[pos] += employed_relation[k]
else
push!(coeffs, employed_relation[k])
push!(tuples, Tuple(new_tuple))
end
# Otherwise, replace with a rationally equivalent cycle.
else
new_coeffs, new_tuples = Oscar._rationally_equivalent_cycle(v, new_tuple, data)
for l in 1:length(new_coeffs)
pos = findfirst(==(new_tuples[l]), tuples)
if pos !== nothing
coeffs[pos] += employed_relation[k] * new_coeffs[l]
else
push!(coeffs, employed_relation[k] * new_coeffs[l])
push!(tuples, new_tuples[l])
end
end
end
=#

end
end

return [coeffs, tuples]

end
Loading

0 comments on commit 7887fe0

Please sign in to comment.