Skip to content

Commit

Permalink
booktests: redo some whitespace / omission / seed fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
benlorenz committed Oct 18, 2024
1 parent 7310bde commit 571179c
Show file tree
Hide file tree
Showing 19 changed files with 77 additions and 55 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ julia> degree(X)
9

julia> S = ambient_coordinate_ring(X)
Multivariate polynomial ring in 5 variables over GF(31991) graded by
Multivariate polynomial ring in 5 variables over GF(31991) graded by
x -> [1]
y -> [1]
z -> [1]
Expand Down
2 changes: 1 addition & 1 deletion test/book/cornerstones/algebraic-geometry/ex21a.jlcon
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
julia> J1 = ideal([H(I[1]), H(I[2])])
julia> J1 = ideal([H(I[1]), H(I[2])])
Ideal generated by
x0*x2 - x1^2
x0*x3 - x1*x2
Expand Down
5 changes: 3 additions & 2 deletions test/book/cornerstones/algebraic-geometry/ex23a.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -12,10 +12,11 @@ julia> other_pos_abs = pos_abs == 1 ? 2 : 1
julia> cI2 = cIabs[other_pos_abs][3]
Ideal generated by
648*y + (-160*_a^3 - 1269*_a^2 + 22446*_a + 972)*z
184147758075888*x + (2850969000960*_a^3 + 22611747888864*_a^2 - 399955313722176*_a - 17319636680832)*y + (2884707374400*_a^3 + 22782606070410*_a^2 - 405172045313820*_a - 57843867366864)*z
184147758075888*x + (2850969000960*_a^3 + 22611747888864*_a^2 - 399955313722176*_a - 17319636680832)*y + (2884707374400*_a^3 + 2
2782606070410*_a^2 - 405172045313820*_a - 57843867366864)*z

julia> R2 = base_ring(cI2)
Multivariate polynomial ring in 3 variables over number field graded by
Multivariate polynomial ring in 3 variables over number field graded by
x -> [1]
y -> [1]
z -> [1]
Expand Down
2 changes: 2 additions & 0 deletions test/book/cornerstones/algebraic-geometry/ex314.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -68,11 +68,13 @@ M1 -> M
e[1] -> (-x_0*x_3 + x_1*x_2)*e[1]
Graded module homomorphism of degree [2]


julia> phi2 = psi(tohomM1M(hom1[2]))
M1 -> M
e[1] -> (-x_0*x_2 + x_1^2)*e[1]
Graded module homomorphism of degree [2]


julia> kerphi2, _ = kernel(phi2);

julia> iszero(kerphi2)
Expand Down
3 changes: 2 additions & 1 deletion test/book/cornerstones/algebraic-geometry/param.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@ julia> f = x^5 + 10*x^4*y + 20*x^3*y^2 + 130*x^2*y^3 - 20*x*y^4 + 20*y^5 - 2*x^4

julia> C = plane_curve(f)
Projective plane curve
defined by 0 = x^5 + 10*x^4*y - 2*x^4*z + 20*x^3*y^2 - 40*x^3*y*z + x^3*z^2 + 130*x^2*y^3 - 150*x^2*y^2*z + 30*x^2*y*z^2 - 20*x*y^4 - 90*x*y^3*z + 110*x*y^2*z^2 + 20*y^5 - 40*y^4*z + 20*y^3*z^2
defined by 0 = x^5 + 10*x^4*y - 2*x^4*z + 20*x^3*y^2 - 40*x^3*y*z + x^3*z^2 + 130*x^2*y^3 - 150*x^2*y^2*z + 30*x^2*y*z^2 - 20*x*
y^4 - 90*x*y^3*z + 110*x*y^2*z^2 + 20*y^5 - 40*y^4*z + 20*y^3*z^2

julia> conics = [x^2-x*z, y^2-y*z];

Expand Down
46 changes: 15 additions & 31 deletions test/book/cornerstones/groups/explSL25.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -4,37 +4,21 @@ SL(2,5)
julia> T = character_table(G)
Character table of SL(2,5)

2 3 1 1 3 1
3 1 . . 1 .
5 1 1 1 1 1

1a 10a 10b 2a 5a

X_1 1 1 1 1 1
X_2 2 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 -2 -z_5^3 - z_5^2 - 1
X_3 2 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 -2 z_5^3 + z_5^2
X_4 3 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 3 -z_5^3 - z_5^2
X_5 3 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 3 z_5^3 + z_5^2 + 1
X_6 4 -1 -1 4 -1
X_7 4 1 1 -4 -1
X_8 5 . . 5 .
X_9 6 -1 -1 -6 1

2 1 1 1 2
3 . 1 1 .
5 1 . . .

5b 3a 6a 4a

X_1 1 1 1 1
X_2 z_5^3 + z_5^2 -1 1 .
X_3 -z_5^3 - z_5^2 - 1 -1 1 .
X_4 z_5^3 + z_5^2 + 1 . . -1
X_5 -z_5^3 - z_5^2 . . -1
X_6 -1 1 1 .
X_7 -1 1 -1 .
X_8 . -1 -1 1
X_9 1 . . .
2 3 1 1 3 1 1 1 1 2
3 1 . . 1 . . 1 1 .
5 1 1 1 1 1 1 . . .

1a 10a 10b 2a 5a 5b 3a 6a 4a

X_1 1 1 1 1 1 1 1 1 1
X_2 2 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 -2 -z_5^3 - z_5^2 - 1 z_5^3 + z_5^2 -1 1 .
X_3 2 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 -2 z_5^3 + z_5^2 -z_5^3 - z_5^2 - 1 -1 1 .
X_4 3 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 3 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 . . -1
X_5 3 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 3 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 . . -1
X_6 4 -1 -1 4 -1 -1 1 1 .
X_7 4 1 1 -4 -1 -1 1 -1 .
X_8 5 . . 5 . . -1 -1 1
X_9 6 -1 -1 -6 1 1 . . .

julia> R = gmodule(T[end])
G-module for G acting on vector space of dimension 6 over abelian closure of Q
Expand Down
2 changes: 1 addition & 1 deletion test/book/cornerstones/number-theory/galoismod.jlcon
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
julia> Oscar.randseed!(3371100);
julia> Oscar.randseed!(7360734);

julia> Qx, x = QQ["x"];

Expand Down
15 changes: 13 additions & 2 deletions test/book/cornerstones/number-theory/intro.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,13 @@ julia> discriminant(OK)
julia> prime_ideals_over(OK, 7)
2-element Vector{AbsSimpleNumFieldOrderIdeal}:
<7, a + 5>
Norm: 7
Minimum: 7
two normal wrt: 7
<7, a + 2>
Norm: 7
Minimum: 7
two normal wrt: 7

julia> factor(change_coefficient_ring(GF(7), x^2 - 235))
1 * (x + 5) * (x + 2)
Expand All @@ -56,11 +62,16 @@ Z/6

julia> m(zero(A)) # apply m to the neutral element of A
<1, 1>
[...]
Norm: 1
Minimum: 1
principal generator 1
two normal wrt: 1

julia> P = prime_ideals_over(OK, 2)[1]
<2, a + 1>
[...]
Norm: 2
Minimum: 2
two normal wrt: 2

julia> preimage(m, P)
Abelian group element [3]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,9 @@ julia> R, x, c = polynomial_ring(QQ, :x=>1:3, :c=>(0:1,0:1,0:1));

julia> f = sum(prod(x[i]^Int(p[i]) for i=1:3)
* c[(Vector{Int}(p)+[1,1,1])...] for p=lattice_points(C))
x[1]*x[2]*x[3]*c[1, 1, 1] + x[1]*x[2]*c[1, 1, 0] +
x[1]*x[3]*c[1, 0, 1] + x[1]*c[1, 0, 0] +
x[2]*x[3]*c[0, 1, 1] + x[2]*c[0, 1, 0] +
x[3]*c[0, 0, 1] + c[0, 0, 0]
x[1]*x[2]*x[3]*c[1, 1, 1] + x[1]*x[2]*c[1, 1, 0] + x[1]*x[3]*c[1, 0, 1] + x[1]*c[1, 0, 0] + x[2]*x[3]*c[0, 1, 1] + x[2]*c[0, 1, 0] + x[3]*c[0, 0, 1] + c[0, 0, 0]

julia> I = ideal(R, vcat([derivative(f,t) for t = x], [f]));

julia> D222 = eliminate(I,x)[1]
c[0, 0, 0]^2*c[1, 1, 1]^2 - 2*c[0, 0, 0]*c[1, 0, 0]*c[0, 1, 1]*c[1, 1, 1] - [...] + c[1, 1, 0]^2*c[0, 0, 1]^2
c[0, 0, 0]^2*c[1, 1, 1]^2 - 2*c[0, 0, 0]*c[1, 0, 0]*c[0, 1, 1]*c[1, 1, 1] - 2*c[0, 0, 0]*c[0, 1, 0]*c[1, 0, 1]*c[1, 1, 1] - 2*c[0, 0, 0]*c[1, 1, 0]*c[0, 0, 1]*c[1, 1, 1] + 4*c[0, 0, 0]*c[1, 1, 0]*c[1, 0, 1]*c[0, 1, 1] + c[1, 0, 0]^2*c[0, 1, 1]^2 + 4*c[1, 0, 0]*c[0, 1, 0]*c[0, 0, 1]*c[1, 1, 1] - 2*c[1, 0, 0]*c[0, 1, 0]*c[1, 0, 1]*c[0, 1, 1] - 2*c[1, 0, 0]*c[1, 1, 0]*c[0, 0, 1]*c[0, 1, 1] + c[0, 1, 0]^2*c[1, 0, 1]^2 - 2*c[0, 1, 0]*c[1, 1, 0]*c[0, 0, 1]*c[1, 0, 1] + c[1, 1, 0]^2*c[0, 0, 1]^2
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,7 @@ Polytope in ambient dimension 6

julia> show(f_vector(P))
ZZRingElem[30, 336, 1468, 2874, 2568, 856]

julia> show(h_vector(P))
ZZRingElem[1, 24, 201, 404, 201, 24, 1]

julia> show(g_vector(P))
ZZRingElem[1, 23, 177, 203]
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ julia> max_g2 = maximum(g_vectors[:,1])

julia> show(upper_bound_g_vector(6,30))
[1, 23, 276, 2300]

julia> ub = [ Int(Polymake.polytope.pseudopower(g2,2)) for g2 in min_g2:max_g2 ]
34-element Vector{Int64}:
990
Expand Down
3 changes: 1 addition & 2 deletions test/book/cornerstones/polyhedral-geometry/not-pointed.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -5,5 +5,4 @@ julia> vertices(Q)
0-element SubObjectIterator{PointVector{QQFieldElem}}

julia> minimal_faces(Q)
(base_points = PointVector{QQFieldElem}[[0, 0, 0]],
lineality_basis = RayVector{QQFieldElem}[[1, 0, 0]])
(base_points = PointVector{QQFieldElem}[[0, 0, 0]], lineality_basis = RayVector{QQFieldElem}[[1, 0, 0]])
1 change: 1 addition & 0 deletions test/book/cornerstones/polyhedral-geometry/pentagon.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ x_1 - 2*x_2 <= 1
x_1 <= 1
x_2 <= 1


julia> f_vector(P)
2-element Vector{ZZRingElem}:
5
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,5 +18,6 @@ julia> maximal_cones(IncidenceMatrix, tv)
[2, 3]
[2, 4]


julia> Sigma = polyhedral_fan(tv)
Polyhedral fan in ambient dimension 2
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ julia> is_affine(v2)
false

julia> cox_ring(v2)
Multivariate polynomial ring in 3 variables over QQ graded by
Multivariate polynomial ring in 3 variables over QQ graded by
u1 -> [1]
u2 -> [1]
e -> [-2]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,13 @@ G2(3)mod2
3 6 6 6 6 4 4 . 3 3 3 . .
7 1 . . . . . 1 . . . . .
13 1 . . . . . . . . . 1 1

1a 3a 3b 3c 3d 3e 7a 9a 9b 9c 13a 13b
2P 1a 3a 3b 3c 3d 3e 7a 9a 9c 9b 13b 13a
3P 1a 1a 1a 1a 1a 1a 7a 3c 3c 3c 13a 13b
7P 1a 3a 3b 3c 3d 3e 1a 9a 9b 9c 13b 13a
13P 1a 3a 3b 3c 3d 3e 7a 9a 9b 9c 1a 1a
d OD 2
d OD 2
X_1 1 + 1 1 1 1 1 1 1 1 1 1 1 1
X_2 1 O- + 14 5 5 -4 2 -1 . 2 -1 -1 1 1
X_3 2 o 64 -8 -8 1 4 -2 1 1 A /A -1 -1
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ true
julia> RS3 = invariant_ring(QQ, symmetric_group(3));

julia> R = polynomial_ring(RS3)
Multivariate polynomial ring in 3 variables over QQ graded by
Multivariate polynomial ring in 3 variables over QQ graded by
x[1] -> [1]
x[2] -> [1]
x[3] -> [1]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ Ideal generated by
x^2 - x*w

julia> S = base_ring(clo)
Multivariate polynomial ring in 5 variables over QQ graded by
Multivariate polynomial ring in 5 variables over QQ graded by
x -> [1]
y -> [1]
z -> [1]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,4 +12,32 @@ julia> Igf = ideal(R,[g,f]);

julia> eliminate(Igf,[y])
Ideal generated by
-x^7 + (b2^2 + b34^2 + 2*b34*b4 + 2*b4^2 + b56^2 + 2*b56*b6 + 2*b6^2)*x^6 + (-b2^2*b34^2 - 2*b2^2*b34*b4 - 2*b2^2*b4^2 - b2^2*b56^2 - 2*b2^2*b56*b6 - 2*b2^2*b6^2 + b2^2*b7^2 - b34^2*b4^2 - b34^2*b56^2 - 2*b34^2*b56*b6 - 2*b34^2*b6^2 + b34^2*b7^2 - 2*b34*b4^3 - 2*b34*b4*b56^2 - 4*b34*b4*b56*b6 - 4*b34*b4*b6^2 + 2*b34*b4*b7^2 - b4^4 - 2*b4^2*b56^2 - 4*b4^2*b56*b6 - 4*b4^2*b6^2 + 2*b4^2*b7^2 - b56^2*b6^2 + b56^2*b7^2 - 2*b56*b6^3 - b6^4)*x^5 + (b2^2*b34^2*b4^2 + b2^2*b34^2*b56^2 + 2*b2^2*b34^2*b56*b6 + 2*b2^2*b34^2*b6^2 - b2^2*b34^2*b7^2 + 2*b2^2*b34*b4^3 + 2*b2^2*b34*b4*b56^2 + 4*b2^2*b34*b4*b56*b6 + 4*b2^2*b34*b4*b6^2 - 2*b2^2*b34*b4*b7^2 + b2^2*b4^4 + 2*b2^2*b4^2*b56^2 + 4*b2^2*b4^2*b56*b6 + 4*b2^2*b4^2*b6^2 - 2*b2^2*b4^2*b7^2 + b2^2*b56^2*b6^2 - b2^2*b56^2*b7^2 + 2*b2^2*b56*b6^3 - 2*b2^2*b56*b6*b7^2 + b2^2*b6^4 - 2*b2^2*b6^2*b7^2 + b34^2*b4^2*b56^2 + 2*b34^2*b4^2*b56*b6 + 2*b34^2*b4^2*b6^2 - b34^2*b4^2*b7^2 + b34^2*b56^2*b6^2 - b34^2*b56^2*b7^2 + 2*b34^2*b56*b6^3 - 2*b34^2*b56*b6*b7^2 + b34^2*b6^4 - 2*b34^2*b6^2*b7^2 + 2*b34*b4^3*b56^2 + 4*b34*b4^3*b56*b6 + 4*b34*b4^3*b6^2 - 2*b34*b4^3*b7^2 + 2*b34*b4*b56^2*b6^2 - 2*b34*b4*b56^2*b7^2 + 4*b34*b4*b56*b6^3 - 2*b34*b4*b56*b6*b7^2 + 2*b34*b4*b6^4 - 2*b34*b4*b6^2*b7^2 + b4^4*b56^2 + 2*b4^4*b56*b6 + 2*b4^4*b6^2 - b4^4*b7^2 + 2*b4^2*b56^2*b6^2 - 2*b4^2*b56^2*b7^2 + 4*b4^2*b56*b6^3 - 2*b4^2*b56*b6*b7^2 + 2*b4^2*b6^4 - 2*b4^2*b6^2*b7^2)*x^4 + (-b2^2*b34^2*b4^2*b56^2 - 2*b2^2*b34^2*b4^2*b56*b6 - 2*b2^2*b34^2*b4^2*b6^2 + b2^2*b34^2*b4^2*b7^2 - b2^2*b34^2*b56^2*b6^2 + b2^2*b34^2*b56^2*b7^2 - 2*b2^2*b34^2*b56*b6^3 + 2*b2^2*b34^2*b56*b6*b7^2 - b2^2*b34^2*b6^4 + 2*b2^2*b34^2*b6^2*b7^2 - 2*b2^2*b34*b4^3*b56^2 - 4*b2^2*b34*b4^3*b56*b6 - 4*b2^2*b34*b4^3*b6^2 + 2*b2^2*b34*b4^3*b7^2 - 2*b2^2*b34*b4*b56^2*b6^2 + 2*b2^2*b34*b4*b56^2*b7^2 - 4*b2^2*b34*b4*b56*b6^3 + 4*b2^2*b34*b4*b56*b6*b7^2 - 2*b2^2*b34*b4*b6^4 + 4*b2^2*b34*b4*b6^2*b7^2 - b2^2*b4^4*b56^2 - 2*b2^2*b4^4*b56*b6 - 2*b2^2*b4^4*b6^2 + b2^2*b4^4*b7^2 - 2*b2^2*b4^2*b56^2*b6^2 + 2*b2^2*b4^2*b56^2*b7^2 - 4*b2^2*b4^2*b56*b6^3 + 4*b2^2*b4^2*b56*b6*b7^2 - 2*b2^2*b4^2*b6^4 + 4*b2^2*b4^2*b6^2*b7^2 + b2^2*b56^2*b6^2*b7^2 + 2*b2^2*b56*b6^3*b7^2 + b2^2*b6^4*b7^2 - b34^2*b4^2*b56^2*b6^2 + b34^2*b4^2*b56^2*b7^2 - 2*b34^2*b4^2*b56*b6^3 + 2*b34^2*b4^2*b56*b6*b7^2 - b34^2*b4^2*b6^4 + 2*b34^2*b4^2*b6^2*b7^2 + b34^2*b56^2*b6^2*b7^2 + 2*b34^2*b56*b6^3*b7^2 + b34^2*b6^4*b7^2 - 2*b34*b4^3*b56^2*b6^2 + 2*b34*b4^3*b56^2*b7^2 - 4*b34*b4^3*b56*b6^3 + 4*b34*b4^3*b56*b6*b7^2 - 2*b34*b4^3*b6^4 + 4*b34*b4^3*b6^2*b7^2 - b4^4*b56^2*b6^2 + b4^4*b56^2*b7^2 - 2*b4^4*b56*b6^3 + 2*b4^4*b56*b6*b7^2 - b4^4*b6^4 + 2*b4^4*b6^2*b7^2)*x^3 + (b2^2*b34^2*b4^2*b56^2*b6^2 - b2^2*b34^2*b4^2*b56^2*b7^2 + 2*b2^2*b34^2*b4^2*b56*b6^3 - 2*b2^2*b34^2*b4^2*b56*b6*b7^2 + b2^2*b34^2*b4^2*b6^4 - 2*b2^2*b34^2*b4^2*b6^2*b7^2 - b2^2*b34^2*b56^2*b6^2*b7^2 - 2*b2^2*b34^2*b56*b6^3*b7^2 - b2^2*b34^2*b6^4*b7^2 + 2*b2^2*b34*b4^3*b56^2*b6^2 - 2*b2^2*b34*b4^3*b56^2*b7^2 + 4*b2^2*b34*b4^3*b56*b6^3 - 4*b2^2*b34*b4^3*b56*b6*b7^2 + 2*b2^2*b34*b4^3*b6^4 - 4*b2^2*b34*b4^3*b6^2*b7^2 - 2*b2^2*b34*b4*b56^2*b6^2*b7^2 - 4*b2^2*b34*b4*b56*b6^3*b7^2 - 2*b2^2*b34*b4*b6^4*b7^2 + b2^2*b4^4*b56^2*b6^2 - b2^2*b4^4*b56^2*b7^2 + 2*b2^2*b4^4*b56*b6^3 - 2*b2^2*b4^4*b56*b6*b7^2 + b2^2*b4^4*b6^4 - 2*b2^2*b4^4*b6^2*b7^2 - 2*b2^2*b4^2*b56^2*b6^2*b7^2 - 4*b2^2*b4^2*b56*b6^3*b7^2 - 2*b2^2*b4^2*b6^4*b7^2)*x^2 + (b2^2*b34^2*b4^2*b56^2*b6^2*b7^2 + 2*b2^2*b34^2*b4^2*b56*b6^3*b7^2 + b2^2*b34^2*b4^2*b6^4*b7^2 + 2*b2^2*b34*b4^3*b56^2*b6^2*b7^2 + 4*b2^2*b34*b4^3*b56*b6^3*b7^2 + 2*b2^2*b34*b4^3*b6^4*b7^2 + b2^2*b4^4*b56^2*b6^2*b7^2 + 2*b2^2*b4^4*b56*b6^3*b7^2 + b2^2*b4^4*b6^4*b7^2)*x
-x^7 + (b2^2 + b34^2 + 2*b34*b4 + 2*b4^2 + b56^2 + 2*b56*b6 + 2*b6^2)*x^6 + (-b2^2*b34^2 - 2*b2^2*b34*b4 - 2*b2^2*b4^2 - b2^2*b5
6^2 - 2*b2^2*b56*b6 - 2*b2^2*b6^2 + b2^2*b7^2 - b34^2*b4^2 - b34^2*b56^2 - 2*b34^2*b56*b6 - 2*b34^2*b6^2 + b34^2*b7^2 - 2*b34*b4
^3 - 2*b34*b4*b56^2 - 4*b34*b4*b56*b6 - 4*b34*b4*b6^2 + 2*b34*b4*b7^2 - b4^4 - 2*b4^2*b56^2 - 4*b4^2*b56*b6 - 4*b4^2*b6^2 + 2*b4
^2*b7^2 - b56^2*b6^2 + b56^2*b7^2 - 2*b56*b6^3 - b6^4)*x^5 + (b2^2*b34^2*b4^2 + b2^2*b34^2*b56^2 + 2*b2^2*b34^2*b56*b6 + 2*b2^2*
b34^2*b6^2 - b2^2*b34^2*b7^2 + 2*b2^2*b34*b4^3 + 2*b2^2*b34*b4*b56^2 + 4*b2^2*b34*b4*b56*b6 + 4*b2^2*b34*b4*b6^2 - 2*b2^2*b34*b4
*b7^2 + b2^2*b4^4 + 2*b2^2*b4^2*b56^2 + 4*b2^2*b4^2*b56*b6 + 4*b2^2*b4^2*b6^2 - 2*b2^2*b4^2*b7^2 + b2^2*b56^2*b6^2 - b2^2*b56^2*
b7^2 + 2*b2^2*b56*b6^3 - 2*b2^2*b56*b6*b7^2 + b2^2*b6^4 - 2*b2^2*b6^2*b7^2 + b34^2*b4^2*b56^2 + 2*b34^2*b4^2*b56*b6 + 2*b34^2*b4
^2*b6^2 - b34^2*b4^2*b7^2 + b34^2*b56^2*b6^2 - b34^2*b56^2*b7^2 + 2*b34^2*b56*b6^3 - 2*b34^2*b56*b6*b7^2 + b34^2*b6^4 - 2*b34^2*
b6^2*b7^2 + 2*b34*b4^3*b56^2 + 4*b34*b4^3*b56*b6 + 4*b34*b4^3*b6^2 - 2*b34*b4^3*b7^2 + 2*b34*b4*b56^2*b6^2 - 2*b34*b4*b56^2*b7^2
+ 4*b34*b4*b56*b6^3 - 2*b34*b4*b56*b6*b7^2 + 2*b34*b4*b6^4 - 2*b34*b4*b6^2*b7^2 + b4^4*b56^2 + 2*b4^4*b56*b6 + 2*b4^4*b6^2 - b4
^4*b7^2 + 2*b4^2*b56^2*b6^2 - 2*b4^2*b56^2*b7^2 + 4*b4^2*b56*b6^3 - 2*b4^2*b56*b6*b7^2 + 2*b4^2*b6^4 - 2*b4^2*b6^2*b7^2)*x^4 + (
-b2^2*b34^2*b4^2*b56^2 - 2*b2^2*b34^2*b4^2*b56*b6 - 2*b2^2*b34^2*b4^2*b6^2 + b2^2*b34^2*b4^2*b7^2 - b2^2*b34^2*b56^2*b6^2 + b2^2
*b34^2*b56^2*b7^2 - 2*b2^2*b34^2*b56*b6^3 + 2*b2^2*b34^2*b56*b6*b7^2 - b2^2*b34^2*b6^4 + 2*b2^2*b34^2*b6^2*b7^2 - 2*b2^2*b34*b4^
3*b56^2 - 4*b2^2*b34*b4^3*b56*b6 - 4*b2^2*b34*b4^3*b6^2 + 2*b2^2*b34*b4^3*b7^2 - 2*b2^2*b34*b4*b56^2*b6^2 + 2*b2^2*b34*b4*b56^2*
b7^2 - 4*b2^2*b34*b4*b56*b6^3 + 4*b2^2*b34*b4*b56*b6*b7^2 - 2*b2^2*b34*b4*b6^4 + 4*b2^2*b34*b4*b6^2*b7^2 - b2^2*b4^4*b56^2 - 2*b
2^2*b4^4*b56*b6 - 2*b2^2*b4^4*b6^2 + b2^2*b4^4*b7^2 - 2*b2^2*b4^2*b56^2*b6^2 + 2*b2^2*b4^2*b56^2*b7^2 - 4*b2^2*b4^2*b56*b6^3 + 4
*b2^2*b4^2*b56*b6*b7^2 - 2*b2^2*b4^2*b6^4 + 4*b2^2*b4^2*b6^2*b7^2 + b2^2*b56^2*b6^2*b7^2 + 2*b2^2*b56*b6^3*b7^2 + b2^2*b6^4*b7^2
- b34^2*b4^2*b56^2*b6^2 + b34^2*b4^2*b56^2*b7^2 - 2*b34^2*b4^2*b56*b6^3 + 2*b34^2*b4^2*b56*b6*b7^2 - b34^2*b4^2*b6^4 + 2*b34^2*
b4^2*b6^2*b7^2 + b34^2*b56^2*b6^2*b7^2 + 2*b34^2*b56*b6^3*b7^2 + b34^2*b6^4*b7^2 - 2*b34*b4^3*b56^2*b6^2 + 2*b34*b4^3*b56^2*b7^2
- 4*b34*b4^3*b56*b6^3 + 4*b34*b4^3*b56*b6*b7^2 - 2*b34*b4^3*b6^4 + 4*b34*b4^3*b6^2*b7^2 - b4^4*b56^2*b6^2 + b4^4*b56^2*b7^2 - 2
*b4^4*b56*b6^3 + 2*b4^4*b56*b6*b7^2 - b4^4*b6^4 + 2*b4^4*b6^2*b7^2)*x^3 + (b2^2*b34^2*b4^2*b56^2*b6^2 - b2^2*b34^2*b4^2*b56^2*b7
^2 + 2*b2^2*b34^2*b4^2*b56*b6^3 - 2*b2^2*b34^2*b4^2*b56*b6*b7^2 + b2^2*b34^2*b4^2*b6^4 - 2*b2^2*b34^2*b4^2*b6^2*b7^2 - b2^2*b34^
2*b56^2*b6^2*b7^2 - 2*b2^2*b34^2*b56*b6^3*b7^2 - b2^2*b34^2*b6^4*b7^2 + 2*b2^2*b34*b4^3*b56^2*b6^2 - 2*b2^2*b34*b4^3*b56^2*b7^2
+ 4*b2^2*b34*b4^3*b56*b6^3 - 4*b2^2*b34*b4^3*b56*b6*b7^2 + 2*b2^2*b34*b4^3*b6^4 - 4*b2^2*b34*b4^3*b6^2*b7^2 - 2*b2^2*b34*b4*b56^
2*b6^2*b7^2 - 4*b2^2*b34*b4*b56*b6^3*b7^2 - 2*b2^2*b34*b4*b6^4*b7^2 + b2^2*b4^4*b56^2*b6^2 - b2^2*b4^4*b56^2*b7^2 + 2*b2^2*b4^4*
b56*b6^3 - 2*b2^2*b4^4*b56*b6*b7^2 + b2^2*b4^4*b6^4 - 2*b2^2*b4^4*b6^2*b7^2 - 2*b2^2*b4^2*b56^2*b6^2*b7^2 - 4*b2^2*b4^2*b56*b6^3
*b7^2 - 2*b2^2*b4^2*b6^4*b7^2)*x^2 + (b2^2*b34^2*b4^2*b56^2*b6^2*b7^2 + 2*b2^2*b34^2*b4^2*b56*b6^3*b7^2 + b2^2*b34^2*b4^2*b6^4*b
7^2 + 2*b2^2*b34*b4^3*b56^2*b6^2*b7^2 + 4*b2^2*b34*b4^3*b56*b6^3*b7^2 + 2*b2^2*b34*b4^3*b6^4*b7^2 + b2^2*b4^4*b56^2*b6^2*b7^2 +
2*b2^2*b4^4*b56*b6^3*b7^2 + b2^2*b4^4*b6^4*b7^2)*x

0 comments on commit 571179c

Please sign in to comment.