-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
115,736 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
function fileList = getAllFiles(dirName) | ||
|
||
dirData = dir(dirName); %# Get the data for the current directory | ||
dirIndex = [dirData.isdir]; %# Find the index for directories | ||
fileList = {dirData(~dirIndex).name}'; %'# Get a list of the files | ||
if ~isempty(fileList) | ||
fileList = cellfun(@(x) fullfile(dirName,x),... %# Prepend path to files | ||
fileList,'UniformOutput',false); | ||
end | ||
subDirs = {dirData(dirIndex).name}; %# Get a list of the subdirectories | ||
validIndex = ~ismember(subDirs,{'.','..'}); %# Find index of subdirectories | ||
%# that are not '.' or '..' | ||
for iDir = find(validIndex) %# Loop over valid subdirectories | ||
nextDir = fullfile(dirName,subDirs{iDir}); %# Get the subdirectory path | ||
fileList = [fileList; getAllFiles(nextDir)]; %# Recursively call getAllFiles | ||
end | ||
|
||
end |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
% z=readtable('NMO_161366-voltageDistributionPreCosyne.csv'); % old one- on eLife folder | ||
% z= readtable('/Users/darshanr/Dropbox (HHMI)/VoltageWholeCellProject-2018/MultiCompProject/all_chart_output_v3.csv'); | ||
|
||
z= readtable('/Users/darshan/Dropbox/Work/VoltageWholeCellProject-2018/MultiCompProject/all_chart_output_v3_v1.csv'); | ||
%z= readtable('/Users/darshan/Dropbox/Work/VoltageWholeCellProject-2018/MultiCompProject/NMO_161366_different_location.csv'); | ||
|
||
|
||
|
||
%% Plot on-soma Vs distributed- summary | ||
Morphology='NMO_161366'; % L5 mouse | ||
% Morphology='NMO_130658'; % L4 FS mouse | ||
% Morphology='NMO_02484'; % L4 Spiny Stellate mouse | ||
|
||
% Morphology='JM072303'; % L4 Spiny Stellate mouse | ||
|
||
|
||
for kk=1:2 | ||
|
||
if kk==1 | ||
min_dist=-0.5; max_dist=0.001; condValue=2; | ||
else | ||
min_dist=0; max_dist=9e10; condValue=2; | ||
end | ||
|
||
z_morph=z; | ||
zdis=z_morph(strcmp(z_morph.model_name,Morphology),:); | ||
zdis=zdis((zdis.min_dist==min_dist)&(zdis.max_dist<max_dist),:); | ||
|
||
cond_list=unique([zdis.cond_m]); | ||
cond_m=cond_list(condValue) % The first, which is 0.5nanoSimense | ||
zdis_cond=zdis(zdis.cond_m==cond_m,:); | ||
% MODEL NAME ADD !!!!! NMO_161366 | ||
size(zdis_cond) | ||
syn_n_list=unique([zdis_cond.syn_n]); | ||
|
||
figure | ||
% % % syn_n_list=[204 273 409 546 819 1023 2047]; | ||
% syn_n_list=[ 409 1023 2047 4095]; | ||
|
||
% syn_n_list=[ 468 937 2344 4688]; | ||
sig_vec=[];sdv_vec=[];totSim=[]; | ||
for ii=1:length(syn_n_list) | ||
% ii=5 | ||
v=zdis_cond.v_mean(zdis_cond.syn_n==syn_n_list(ii)); | ||
sig=zdis_cond.v_std(zdis_cond.syn_n==syn_n_list(ii)); | ||
plot(v,sig,'o') | ||
hold on | ||
sig_vec(ii)=mean(sig);sdv_vec(ii)=std(v);totSim(ii)=length(v); | ||
end | ||
figure(2) | ||
subplot 211 | ||
semilogx(syn_n_list,sdv_vec,'o-') | ||
hold on;axis square;box off; | ||
xlim([450 10000]) | ||
ylabel('\Delta_v- heteroginity voltage') | ||
subplot 212 | ||
semilogx(syn_n_list,sig_vec,'o-') | ||
hold on;axis square;box off; | ||
|
||
|
||
xlim([450 10000]);ylim([0 6]) | ||
xlabel('num of conn.') | ||
ylabel('std of voltage') | ||
% legend('on-soma,g_s=0.01','uniform-dist,g_s=0.0025') | ||
legend('on-soma,g_s=0.0025','uniform-dist,g_s=0.0025') | ||
end | ||
%% Plot on-soma Vs distributed- voltage distributions | ||
lineStyles = linspecer(100,'sequential'); | ||
c=colormap(lineStyles); | ||
BIN_WIDTH = 1; | ||
BIN_MAX = -30; | ||
BIN_RANGE = -80:BIN_WIDTH:BIN_MAX; | ||
x_values = -90:0.01:BIN_MAX; | ||
c_vec=[1 100]; | ||
for kk=1:2 | ||
if kk==1 | ||
% min_dist=-0.5; max_dist=0.001; condValue=1; numSyn=468;numSynIdx=4; | ||
|
||
% % min_dist=-0.5; max_dist=0.001; condValue=1; numSyn=937;numSynIdx=5; | ||
% min_dist=-0.5; max_dist=0.001; condValue=1; numSyn=4688;numSynIdx=7; | ||
% min_dist=-0.5; max_dist=0.001; condValue=2; numSyn=2344;numSynIdx=6; | ||
|
||
|
||
min_dist=-0.5; max_dist=0.001; condValue=2; numSyn=2344; | ||
% min_dist=-0.5; max_dist=0.001; condValue=2; numSyn=7813; | ||
|
||
|
||
else | ||
% min_dist=0; max_dist=9e10; condValue=1; numSyn=409;numSynIdx=5; | ||
|
||
% min_dist=0; max_dist=9e10; condValue=1; numSyn=1023;numSynIdx=8; | ||
% min_dist=0; max_dist=9e10; condValue=1; numSyn=2047;numSynIdx=10; | ||
|
||
% min_dist=0; max_dist=9e10; condValue=1; numSyn=4095;numSynIdx=11; | ||
min_dist=0; max_dist=9e10; condValue=2; numSyn=2047; | ||
% min_dist=0; max_dist=9e10; condValue=2; numSyn=8190; | ||
|
||
end | ||
|
||
% zdis=z; | ||
z_morph=z; | ||
zdis=z_morph(strcmp(z_morph.model_name,Morphology),:); | ||
|
||
zdis=zdis((zdis.min_dist==min_dist)&(zdis.max_dist<max_dist),:); | ||
|
||
cond_list=unique([zdis.cond_m]); | ||
cond_m=cond_list(condValue); | ||
zdis_cond=zdis(zdis.cond_m==cond_m,:); | ||
size(zdis_cond) | ||
syn_n_list=unique([zdis_cond.syn_n]) | ||
numSynIdx=find(syn_n_list==numSyn); | ||
|
||
figure(10) | ||
v=zdis_cond.v_mean(zdis_cond.syn_n==syn_n_list(numSynIdx)); | ||
length(v) | ||
x=v; | ||
pd=fitdist(x,'Normal'); | ||
% Plot comparison of the histogram of the data, and the fit | ||
% figure | ||
|
||
% Empirical distribution | ||
y_data=hist(x,BIN_RANGE); | ||
% bar(BIN_RANGE,y_data./sum(y_data)/BIN_WIDTH,'facealpha',.5,'edgecolor','none') | ||
bar(BIN_RANGE,y_data./sum(y_data)/BIN_WIDTH,'facealpha',.5,'edgecolor','none','facecolor',c(c_vec(kk),:)) | ||
hold on | ||
% x_values = BIN_RANGE; | ||
y = pdf(pd,x_values); | ||
plot(x_values,y,'LineWidth',4,'Color',c(c_vec(kk),:)) | ||
% bar(BIN_RANGE,y_data./sum(y_data)/BIN_WIDTH,'b','facecolor','k','edgecolor','none') | ||
hold on | ||
pause | ||
xlim([-70 -30]) | ||
axis square; box off; | ||
hold on | ||
|
||
% legend('on-soma,g_s=0.0025,#syn=937','uniform-dist,g_s=0.0025,#syn=1023','uniform-dist,g_s=0.0025,#syn=1023') | ||
legend('on-soma,g_s=0.0005,#syn=2344','uniform-dist,g_s=0.0005,#syn=2047','uniform-dist,g_s=0.0025,#syn=1023') | ||
|
||
end | ||
|
||
|
||
|
||
|
Oops, something went wrong.