Skip to content

Commit

Permalink
Updates based on feedback
Browse files Browse the repository at this point in the history
Signed-off-by: Andrew Chappell <[email protected]>
  • Loading branch information
acha5066 committed Dec 13, 2023
1 parent e55cd04 commit ee83900
Show file tree
Hide file tree
Showing 3 changed files with 75 additions and 66 deletions.
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ Inspired from [Keep a Changelog](https://keepachangelog.com/en/1.0.0/)
- Added `includePortInHostHeader` option to `ClientBuilder::fromConfig` ([#118](https://github.com/opensearch-project/opensearch-php/pull/118))
- Added the `RefreshSearchAnalyzers` endpoint ([[#152](https://github.com/opensearch-project/opensearch-php/issues/152))
- Added support for `format` parameter to specify the sql response format ([#161](https://github.com/opensearch-project/opensearch-php/pull/161))
- Implemented the Model, Model Group and Connector apis ([#170](https://github.com/opensearch-project/opensearch-php/pull/170))
- Added ml commons model, model group and connector APIs ([#170](https://github.com/opensearch-project/opensearch-php/pull/170))

### Changed

Expand Down
68 changes: 3 additions & 65 deletions USER_GUIDE.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ class MyOpenSearchClass

public function __construct()
{
//simple Setup
// Simple Setup
$this->client = OpenSearch\ClientBuilder::fromConfig([
'hosts' => [
'https://localhost:9200'
Expand Down Expand Up @@ -501,69 +501,7 @@ $client = \OpenSearch\ClientBuilder::fromConfig($config);

...
```
## Machine Learning Example Usage

This example assumes you are using the AWS managed OpenSearch
service. See [The ML Commons documentation for more examples and further information.](https://github.com/opensearch-project/ml-commons/blob/main/docs/remote_inference_blueprints/openai_connector_embedding_blueprint.md)
## Advanced Features

It walks through the process of setting up a model to generate
vector embeddings from OpenAI.
```php
<?php

# Register a model group.
$modelGroupResponse = $client->ml()->registerModelGroup([
'body' => [
'name' => 'openai_model_group',
'description' => 'Group containing models for OpenAI',
],
]);

# Create the connector.
$connectorResponse = $client->ml()->createConnector([
'body' => [
'name' => "Open AI Embedding Connector",
'description' => "Creates a connector to Open AI's embedding endpoint",
'version' => 1,
'protocol' => 'http',
'parameters' => ['model' => 'text-embedding-ada-002'],
'credential' => [
"secretArn" => '<Your Secret ARN from AWS Secrets Manager>',
"roleArn" => '<Your IAM role ARN>',
]
'actions' => [
[
'action_type' => 'predict',
'method' => 'POST',
'url' => 'https://api.openai.com/v1/embeddings',
'headers' => [
'Authorization': 'Bearer ${credential.secretArn.<Your Open AI Secret in Secrets Manager>}'
],
'request_body' => "{ \"input\": \${parameters.input}, \"model\": \"\${parameters.model}\" }",
'pre_process_function' => "connector.pre_process.openai.embedding",
'post_process_function' => "connector.post_process.openai.embedding",
],
],
],
]);

# Register the model.
$registerModelResponse = $client->ml()->registerModel([
'body' => [
'name' => 'OpenAI embedding model',
'function_name' => 'remote',
'model_group_id' => $modelGroupResponse['model_group_id'],
'description' => 'Model for retrieving vector embeddings from OpenAI',
'connector_id' => $connectorResponse['connector_id'],
],
]);

# Monitor the state of the register model task.
$taskResponse = $client->ml()->getTask(['id' => $registerModelResponse['task_id']]);

assert($taskResponse['state'] === 'COMPLETED');

# Finally deploy the model. You will now be able to generate vector
# embeddings from OpenSearch (via OpenAI).
$client->ml()->deployModel(['id' => $taskResponse['model_id']]);
```
* [ML Commons](guides/ml-commons.md)
71 changes: 71 additions & 0 deletions guides/ml-commons.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# Machine Learning Example Usage

Walks through the process of setting up a model to generate
vector embeddings from OpenAI on AWS managed Opensearch.

### Prerequisites

* This example assumes you are using the AWS managed OpenSearch
service. See [The ml commons documentation](https://github.com/opensearch-project/ml-commons/blob/main/docs/remote_inference_blueprints/openai_connector_embedding_blueprint.md) for more examples and further information.
* You will need an API key from OpenAI. [Sign up](https://platform.openai.com/signup)
* The API key must be stored in [AWS Secrets Manager](https://aws.amazon.com/secrets-manager/)

```php
<?php

# Register a model group.
$modelGroupResponse = $client->ml()->registerModelGroup([
'body' => [
'name' => 'openai_model_group',
'description' => 'Group containing models for OpenAI',
],
]);

# Create the connector.
$connectorResponse = $client->ml()->createConnector([
'body' => [
'name' => "Open AI Embedding Connector",
'description' => "Creates a connector to Open AI's embedding endpoint",
'version' => 1,
'protocol' => 'http',
'parameters' => ['model' => 'text-embedding-ada-002'],
'credential' => [
"secretArn" => '<Your Secret ARN from AWS Secrets Manager>',
"roleArn" => '<Your IAM role ARN>',
]
'actions' => [
[
'action_type' => 'predict',
'method' => 'POST',
'url' => 'https://api.openai.com/v1/embeddings',
'headers' => [
'Authorization': 'Bearer ${credential.secretArn.<Your Open AI Secret in Secrets Manager>}'
],
'request_body' => "{ \"input\": \${parameters.input}, \"model\": \"\${parameters.model}\" }",
'pre_process_function' => "connector.pre_process.openai.embedding",
'post_process_function' => "connector.post_process.openai.embedding",
],
],
],
]);

# Register the model.
$registerModelResponse = $client->ml()->registerModel([
'body' => [
'name' => 'OpenAI embedding model',
'function_name' => 'remote',
'model_group_id' => $modelGroupResponse['model_group_id'],
'description' => 'Model for retrieving vector embeddings from OpenAI',
'connector_id' => $connectorResponse['connector_id'],
],
]);

# Monitor the state of the register model task.
$taskResponse = $client->ml()->getTask(['id' => $registerModelResponse['task_id']]);

assert($taskResponse['state'] === 'COMPLETED');

# Finally deploy the model. You will now be able to generate vector
# embeddings from OpenSearch (via OpenAI).
$client->ml()->deployModel(['id' => $taskResponse['model_id']]);
```

0 comments on commit ee83900

Please sign in to comment.