Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Publish recall as a kpi metric #581

Merged
merged 8 commits into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 41 additions & 2 deletions osbenchmark/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -1410,7 +1410,6 @@ def as_dict(self):
if self.plugin_params:
d["plugin-params"] = self.plugin_params
return d

def to_result_dicts(self):
"""
:return: a list of dicts, suitable for persisting the results of this test execution in a format that is Kibana-friendly.
Expand Down Expand Up @@ -1754,6 +1753,7 @@ def __call__(self):
op_type = task.operation.type
error_rate = self.error_rate(t, op_type)
duration = self.duration(t)

if task.operation.include_in_results_publishing or error_rate > 0:
self.logger.debug("Gathering request metrics for [%s].", t)
result.add_op_metrics(
Expand All @@ -1770,8 +1770,19 @@ def __call__(self):
self.workload.meta_data,
self.test_procedure.meta_data,
task.operation.meta_data,
task.meta_data)
task.meta_data,
),
)

result.add_correctness_metrics(
t,
task.operation.name,
self.single_latency(t, op_type, metric_name="recall@k"),
self.single_latency(t, op_type, metric_name="recall@1"),
error_rate,
duration,
)

self.logger.debug("Gathering indexing metrics.")
result.total_time = self.sum("indexing_total_time")
result.total_time_per_shard = self.shard_stats("indexing_total_time")
Expand Down Expand Up @@ -1966,6 +1977,7 @@ def single_latency(self, task, operation_type, metric_name="latency"):
class GlobalStats:
def __init__(self, d=None):
self.op_metrics = self.v(d, "op_metrics", default=[])
self.correctness_metrics = self.v(d, "correctness_metrics", default=[])
self.total_time = self.v(d, "total_time")
self.total_time_per_shard = self.v(d, "total_time_per_shard", default={})
self.indexing_throttle_time = self.v(d, "indexing_throttle_time")
Expand Down Expand Up @@ -2051,6 +2063,22 @@ def op_metrics(op_item, key, single_value=False):
"max": item["max"]
}
})
elif metric == "correctness_metrics":
for item in value:
if "recall@k" in item:
all_results.append({
"task": item["task"],
"operation": item["operation"],
"name": "recall@k",
"value": item["recall@k"]
})
if "recall@1" in item:
all_results.append({
"task": item["task"],
"operation": item["operation"],
"name": "recall@1",
"value": item["recall@1"]
})
elif metric.startswith("total_transform_") and value is not None:
for item in value:
all_results.append({
Expand Down Expand Up @@ -2094,6 +2122,17 @@ def add_op_metrics(self, task, operation, throughput, latency, service_time, cli
doc["meta"] = meta
self.op_metrics.append(doc)

def add_correctness_metrics(self, task, operation, recall_at_k_stats, recall_at_1_stats, error_rate, duration):
self.correctness_metrics.append({
"task": task,
"operation": operation,
"recall@k": recall_at_k_stats,
"recall@1":recall_at_1_stats,
"error_rate": error_rate,
"duration": duration
}
)

def tasks(self):
# ensure we can read test_execution.json files before Benchmark 0.8.0
return [v.get("task", v["operation"]) for v in self.op_metrics]
Expand Down
21 changes: 19 additions & 2 deletions osbenchmark/results_publisher.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,14 @@ def publish(self):
metrics_table.extend(self._publish_error_rate(record, task))
self.add_warnings(warnings, record, task)

for record in stats.correctness_metrics:
task = record["task"]

keys = record.keys()
recall_keys_in_task_dict = "recall@1" in keys and "recall@k" in keys
if recall_keys_in_task_dict and "mean" in record["recall@1"] and "mean" in record["recall@k"]:
metrics_table.extend(self._publish_recall(record, task))

self.write_results(metrics_table)

if warnings:
Expand Down Expand Up @@ -200,14 +208,23 @@ def _publish_service_time(self, values, task):
def _publish_processing_time(self, values, task):
return self._publish_percentiles("processing time", task, values["processing_time"])

def _publish_percentiles(self, name, task, value):
def _publish_recall(self, values, task):
recall_k_mean = values["recall@k"]["mean"]
recall_1_mean = values["recall@1"]["mean"]

return self._join(
self._line("Mean recall@k", task, recall_k_mean, "", lambda v: "%.2f" % v),
self._line("Mean recall@1", task, recall_1_mean, "", lambda v: "%.2f" % v)
)

def _publish_percentiles(self, name, task, value, unit="ms"):
lines = []
percentiles = self.display_percentiles.get(name, metrics.GlobalStatsCalculator.OTHER_PERCENTILES)

if value:
for percentile in metrics.percentiles_for_sample_size(sys.maxsize, percentiles_list=percentiles):
percentile_value = value.get(metrics.encode_float_key(percentile))
a_line = self._line("%sth percentile %s" % (percentile, name), task, percentile_value, "ms",
a_line = self._line("%sth percentile %s" % (percentile, name), task, percentile_value, unit,
force=self.publish_all_percentile_values)
self._append_non_empty(lines, a_line)
return lines
Expand Down
47 changes: 45 additions & 2 deletions osbenchmark/worker_coordinator/worker_coordinator.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
Expand Down Expand Up @@ -46,7 +46,6 @@
from osbenchmark.workload import WorkloadProcessorRegistry, load_workload, load_workload_plugins
from osbenchmark.utils import convert, console, net
from osbenchmark.worker_coordinator.errors import parse_error

##################################
#
# Messages sent between worker_coordinators
Expand Down Expand Up @@ -847,6 +846,50 @@ def __call__(self, raw_samples):
start = total_start
final_sample_count = 0
for idx, sample in enumerate(raw_samples):
self.logger.debug(
"All sample meta data: [%s],[%s],[%s],[%s],[%s]",
self.workload_meta_data,
self.test_procedure_meta_data,
sample.operation_meta_data,
sample.task.meta_data,
sample.request_meta_data,
)

# if request_meta_data exists then it will have {"success": true/false} as a parameter.
if sample.request_meta_data and len(sample.request_meta_data) > 1:
self.logger.debug("Found: %s", sample.request_meta_data)
recall_metric_names = ["recall@k", "recall@1"]

for recall_metric_name in recall_metric_names:
if recall_metric_name in sample.request_meta_data:
meta_data = self.merge(
self.workload_meta_data,
self.test_procedure_meta_data,
sample.operation_meta_data,
sample.task.meta_data,
sample.request_meta_data,
)

self.logger.debug(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

do we need this to log?

Copy link
Contributor Author

@finnroblin finnroblin Jul 24, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for catching this -- It's debug level so it shouldn't show up with normal logging settings. I was using it to figure out how samples worked, so this log has served its purpose and I'll remove it now.

"Here are the sample stats: Task: %s, operation: %s, operation_type; %s, sample_type: %s",
sample.task.name,
sample.operation_name,
sample.operation_type,
sample.sample_type,
)
self.metrics_store.put_value_cluster_level(
name=recall_metric_name,
value=sample.request_meta_data[recall_metric_name],
unit="",
task=sample.task.name,
operation=sample.operation_name,
operation_type=sample.operation_type,
sample_type=sample.sample_type,
absolute_time=sample.absolute_time,
relative_time=sample.relative_time,
meta_data=meta_data,
)

if idx % self.downsample_factor == 0:
final_sample_count += 1
meta_data = self.merge(
Expand Down
Loading