-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added Hdf5, Bigann dataset parser. Added test cases for dataset and parser. Signed-off-by: Vijayan Balasubramanian <[email protected]>
- Loading branch information
Showing
5 changed files
with
583 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# The OpenSearch Contributors require contributions made to | ||
# this file be licensed under the Apache-2.0 license or a | ||
# compatible open source license. | ||
|
||
import os | ||
import struct | ||
from abc import ABC, ABCMeta, abstractmethod | ||
from enum import Enum | ||
from typing import cast | ||
|
||
import h5py | ||
import numpy as np | ||
|
||
from osbenchmark.utils.parse import ConfigurationError | ||
|
||
|
||
class Context(Enum): | ||
"""DataSet context enum. Can be used to add additional context for how a | ||
data-set should be interpreted. | ||
""" | ||
INDEX = 1 | ||
QUERY = 2 | ||
NEIGHBORS = 3 | ||
|
||
|
||
class DataSet(ABC): | ||
"""DataSet interface. Used for reading data-sets from files. | ||
Methods: | ||
read: Read a chunk of data from the data-set | ||
seek: Get to position in the data-set | ||
size: Gets the number of items in the data-set | ||
reset: Resets internal state of data-set to beginning | ||
""" | ||
__metaclass__ = ABCMeta | ||
|
||
BEGINNING = 0 | ||
|
||
@abstractmethod | ||
def read(self, chunk_size: int): | ||
"""Read vector for given chunk size | ||
@param chunk_size: limits vector size to read | ||
""" | ||
|
||
@abstractmethod | ||
def seek(self, offset: int): | ||
""" | ||
Move reader to given offset | ||
@param offset: value to move reader pointer to | ||
""" | ||
|
||
@abstractmethod | ||
def size(self): | ||
""" | ||
Returns size of dataset | ||
""" | ||
|
||
@abstractmethod | ||
def reset(self): | ||
""" | ||
Resets the dataset reader | ||
""" | ||
|
||
|
||
def get_data_set(data_set_format: str, path: str, context: Context): | ||
""" | ||
Factory method to get instance of Dataset for given format. | ||
Args: | ||
data_set_format: File format like hdf5, bigann | ||
path: Data set file path | ||
context: Dataset Context Enum | ||
Returns: DataSet instance | ||
""" | ||
if data_set_format == HDF5DataSet.FORMAT_NAME: | ||
return HDF5DataSet(path, context) | ||
if data_set_format == BigANNVectorDataSet.FORMAT_NAME: | ||
return BigANNVectorDataSet(path) | ||
raise ConfigurationError("Invalid data set format") | ||
|
||
|
||
class HDF5DataSet(DataSet): | ||
""" Data-set format corresponding to `ANN Benchmarks | ||
<https://github.com/erikbern/ann-benchmarks#data-sets>`_ | ||
""" | ||
|
||
FORMAT_NAME = "hdf5" | ||
|
||
def __init__(self, dataset_path: str, context: Context): | ||
file = h5py.File(dataset_path) | ||
self.data = cast(h5py.Dataset, file[self.parse_context(context)]) | ||
self.current = self.BEGINNING | ||
|
||
def read(self, chunk_size: int): | ||
if self.current >= self.size(): | ||
return None | ||
|
||
end_offset = self.current + chunk_size | ||
if end_offset > self.size(): | ||
end_offset = self.size() | ||
|
||
v = cast(np.ndarray, self.data[self.current:end_offset]) | ||
self.current = end_offset | ||
return v | ||
|
||
def seek(self, offset: int): | ||
|
||
if offset < self.BEGINNING: | ||
raise Exception("Offset must be greater than or equal to 0") | ||
|
||
if offset >= self.size(): | ||
raise Exception("Offset must be less than the data set size") | ||
|
||
self.current = offset | ||
|
||
def size(self): | ||
return self.data.len() | ||
|
||
def reset(self): | ||
self.current = self.BEGINNING | ||
|
||
@staticmethod | ||
def parse_context(context: Context) -> str: | ||
if context == Context.NEIGHBORS: | ||
return "neighbors" | ||
|
||
if context == Context.INDEX: | ||
return "train" | ||
|
||
if context == Context.QUERY: | ||
return "test" | ||
|
||
raise Exception("Unsupported context") | ||
|
||
|
||
class BigANNVectorDataSet(DataSet): | ||
""" Data-set format for vector data-sets for `Big ANN Benchmarks | ||
<https://big-ann-benchmarks.com/index.html#bench-datasets>`_ | ||
""" | ||
|
||
DATA_SET_HEADER_LENGTH = 8 | ||
U8BIN_EXTENSION = "u8bin" | ||
FBIN_EXTENSION = "fbin" | ||
FORMAT_NAME = "bigann" | ||
|
||
BYTES_PER_U8INT = 1 | ||
BYTES_PER_FLOAT = 4 | ||
|
||
def __init__(self, dataset_path: str): | ||
self.file = open(dataset_path, 'rb') | ||
self.file.seek(BigANNVectorDataSet.BEGINNING, os.SEEK_END) | ||
num_bytes = self.file.tell() | ||
self.file.seek(BigANNVectorDataSet.BEGINNING) | ||
|
||
if num_bytes < BigANNVectorDataSet.DATA_SET_HEADER_LENGTH: | ||
raise Exception("File is invalid") | ||
|
||
self.num_points = int.from_bytes(self.file.read(4), "little") | ||
self.dimension = int.from_bytes(self.file.read(4), "little") | ||
self.bytes_per_num = self._get_data_size(dataset_path) | ||
|
||
if (num_bytes - BigANNVectorDataSet.DATA_SET_HEADER_LENGTH) != self.num_points * \ | ||
self.dimension * self.bytes_per_num: | ||
raise Exception("File is invalid") | ||
|
||
self.reader = self._value_reader(dataset_path) | ||
self.current = BigANNVectorDataSet.BEGINNING | ||
|
||
def read(self, chunk_size: int): | ||
if self.current >= self.size(): | ||
return None | ||
|
||
end_offset = self.current + chunk_size | ||
if end_offset > self.size(): | ||
end_offset = self.size() | ||
|
||
v = np.asarray([self._read_vector() for _ in | ||
range(end_offset - self.current)]) | ||
self.current = end_offset | ||
return v | ||
|
||
def seek(self, offset: int): | ||
|
||
if offset < self.BEGINNING: | ||
raise Exception("Offset must be greater than or equal to 0") | ||
|
||
if offset >= self.size(): | ||
raise Exception("Offset must be less than the data set size") | ||
|
||
bytes_offset = BigANNVectorDataSet.DATA_SET_HEADER_LENGTH + \ | ||
self.dimension * self.bytes_per_num * offset | ||
self.file.seek(bytes_offset) | ||
self.current = offset | ||
|
||
def _read_vector(self): | ||
return np.asarray([self.reader(self.file) for _ in | ||
range(self.dimension)]) | ||
|
||
def size(self): | ||
return self.num_points | ||
|
||
def reset(self): | ||
self.file.seek(BigANNVectorDataSet.DATA_SET_HEADER_LENGTH) | ||
self.current = BigANNVectorDataSet.BEGINNING | ||
|
||
def __del__(self): | ||
self.file.close() | ||
|
||
@staticmethod | ||
def _get_data_size(file_name): | ||
ext = file_name.split('.')[-1] | ||
if ext == BigANNVectorDataSet.U8BIN_EXTENSION: | ||
return BigANNVectorDataSet.BYTES_PER_U8INT | ||
|
||
if ext == BigANNVectorDataSet.FBIN_EXTENSION: | ||
return BigANNVectorDataSet.BYTES_PER_FLOAT | ||
|
||
raise Exception("Unknown extension") | ||
|
||
@staticmethod | ||
def _value_reader(file_name): | ||
ext = file_name.split('.')[-1] | ||
if ext == BigANNVectorDataSet.U8BIN_EXTENSION: | ||
return lambda file: float(int.from_bytes(file.read(BigANNVectorDataSet.BYTES_PER_U8INT), "little")) | ||
|
||
if ext == BigANNVectorDataSet.FBIN_EXTENSION: | ||
return lambda file: struct.unpack('<f', file.read(BigANNVectorDataSet.BYTES_PER_FLOAT)) | ||
|
||
raise Exception("Unknown extension") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# The OpenSearch Contributors require contributions made to | ||
# this file be licensed under the Apache-2.0 license or a | ||
# compatible open source license. | ||
|
||
|
||
def parse_string_parameter(key: str, params: dict, default: str = None) -> str: | ||
if key not in params: | ||
if default is not None: | ||
return default | ||
raise ConfigurationError( | ||
"Value cannot be None for param {}".format(key) | ||
) | ||
|
||
if isinstance(params[key], str): | ||
return params[key] | ||
|
||
raise ConfigurationError("Value must be a string for param {}".format(key)) | ||
|
||
|
||
def parse_int_parameter(key: str, params: dict, default: int = None) -> int: | ||
if key not in params: | ||
if default: | ||
return default | ||
raise ConfigurationError( | ||
"Value cannot be None for param {}".format(key) | ||
) | ||
|
||
if isinstance(params[key], int): | ||
return params[key] | ||
|
||
raise ConfigurationError("Value must be a int for param {}".format(key)) | ||
|
||
|
||
def parse_float_parameter(key: str, params: dict, default: float = None) -> float: | ||
if key not in params: | ||
if default: | ||
return default | ||
raise ConfigurationError( | ||
"Value cannot be None for param {}".format(key) | ||
) | ||
|
||
if isinstance(params[key], float): | ||
return params[key] | ||
|
||
raise ConfigurationError("Value must be a float for param {}".format(key)) | ||
|
||
|
||
class ConfigurationError(Exception): | ||
"""Exception raised for errors configuration. | ||
Attributes: | ||
message -- explanation of the error | ||
""" | ||
|
||
def __init__(self, message: str): | ||
self.message = message | ||
super().__init__(self.message) |
Oops, something went wrong.