-
Notifications
You must be signed in to change notification settings - Fork 507
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add delimited term frequency token filter documentation (#5043)
* Add token filter documentation Signed-off-by: Fanit Kolchina <[email protected]> * Add delimited term frequency token filter documentation Signed-off-by: Fanit Kolchina <[email protected]> * Add phonetic token filter Signed-off-by: Fanit Kolchina <[email protected]> * Table format fix Signed-off-by: Fanit Kolchina <[email protected]> * Add script example Signed-off-by: Fanit Kolchina <[email protected]> * Remove similarity Signed-off-by: Fanit Kolchina <[email protected]> * Apply suggestions from code review Co-authored-by: Melissa Vagi <[email protected]> Signed-off-by: kolchfa-aws <[email protected]> * Apply suggestions from code review Signed-off-by: kolchfa-aws <[email protected]> * Apply suggestions from code review Co-authored-by: Nathan Bower <[email protected]> Signed-off-by: kolchfa-aws <[email protected]> --------- Signed-off-by: Fanit Kolchina <[email protected]> Signed-off-by: kolchfa-aws <[email protected]> Co-authored-by: Melissa Vagi <[email protected]> Co-authored-by: Nathan Bower <[email protected]>
- Loading branch information
1 parent
a5472f5
commit b47fd43
Showing
2 changed files
with
339 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
--- | ||
layout: default | ||
title: Delimited term frequency | ||
parent: Token filters | ||
nav_order: 100 | ||
--- | ||
|
||
# Delimited term frequency token filter | ||
|
||
The `delimited_term_freq` token filter separates a token stream into tokens with corresponding term frequencies, based on a provided delimiter. A token consists of all characters before the delimiter, and a term frequency is the integer after the delimiter. For example, if the delimiter is `|`, then for the string `foo|5`, `foo` is the token and `5` is its term frequency. If there is no delimiter, the token filter does not modify the term frequency. | ||
|
||
You can either use a preconfigured `delimited_term_freq` token filter or create a custom one. | ||
|
||
## Preconfigured `delimited_term_freq` token filter | ||
|
||
The preconfigured `delimited_term_freq` token filter uses the `|` default delimiter. To analyze text with the preconfigured token filter, send the following request to the `_analyze` endpoint: | ||
|
||
```json | ||
POST /_analyze | ||
{ | ||
"text": "foo|100", | ||
"tokenizer": "keyword", | ||
"filter": ["delimited_term_freq"], | ||
"attributes": ["termFrequency"], | ||
"explain": true | ||
} | ||
``` | ||
{% include copy-curl.html %} | ||
|
||
The `attributes` array specifies that you want to filter the output of the `explain` parameter to return only `termFrequency`. The response contains both the original token and the parsed output of the token filter that includes the term frequency: | ||
|
||
```json | ||
{ | ||
"detail": { | ||
"custom_analyzer": true, | ||
"charfilters": [], | ||
"tokenizer": { | ||
"name": "keyword", | ||
"tokens": [ | ||
{ | ||
"token": "foo|100", | ||
"start_offset": 0, | ||
"end_offset": 7, | ||
"type": "word", | ||
"position": 0, | ||
"termFrequency": 1 | ||
} | ||
] | ||
}, | ||
"tokenfilters": [ | ||
{ | ||
"name": "delimited_term_freq", | ||
"tokens": [ | ||
{ | ||
"token": "foo", | ||
"start_offset": 0, | ||
"end_offset": 7, | ||
"type": "word", | ||
"position": 0, | ||
"termFrequency": 100 | ||
} | ||
] | ||
} | ||
] | ||
} | ||
} | ||
``` | ||
|
||
## Custom `delimited_term_freq` token filter | ||
|
||
To configure a custom `delimited_term_freq` token filter, first specify the delimiter in the mapping request, in this example, `^`: | ||
|
||
```json | ||
PUT /testindex | ||
{ | ||
"settings": { | ||
"analysis": { | ||
"filter": { | ||
"my_delimited_term_freq": { | ||
"type": "delimited_term_freq", | ||
"delimiter": "^" | ||
} | ||
} | ||
} | ||
} | ||
} | ||
``` | ||
{% include copy-curl.html %} | ||
|
||
Then analyze text with the custom token filter you created: | ||
|
||
```json | ||
POST /testindex/_analyze | ||
{ | ||
"text": "foo^3", | ||
"tokenizer": "keyword", | ||
"filter": ["my_delimited_term_freq"], | ||
"attributes": ["termFrequency"], | ||
"explain": true | ||
} | ||
``` | ||
{% include copy-curl.html %} | ||
|
||
The response contains both the original token and the parsed version with the term frequency: | ||
|
||
```json | ||
{ | ||
"detail": { | ||
"custom_analyzer": true, | ||
"charfilters": [], | ||
"tokenizer": { | ||
"name": "keyword", | ||
"tokens": [ | ||
{ | ||
"token": "foo|100", | ||
"start_offset": 0, | ||
"end_offset": 7, | ||
"type": "word", | ||
"position": 0, | ||
"termFrequency": 1 | ||
} | ||
] | ||
}, | ||
"tokenfilters": [ | ||
{ | ||
"name": "delimited_term_freq", | ||
"tokens": [ | ||
{ | ||
"token": "foo", | ||
"start_offset": 0, | ||
"end_offset": 7, | ||
"type": "word", | ||
"position": 0, | ||
"termFrequency": 100 | ||
} | ||
] | ||
} | ||
] | ||
} | ||
} | ||
``` | ||
|
||
## Combining `delimited_token_filter` with scripts | ||
|
||
You can write Painless scripts to calculate custom scores for the documents in the results. | ||
|
||
First, create an index and provide the following mappings and settings: | ||
|
||
```json | ||
PUT /test | ||
{ | ||
"settings": { | ||
"number_of_shards": 1, | ||
"analysis": { | ||
"tokenizer": { | ||
"keyword_tokenizer": { | ||
"type": "keyword" | ||
} | ||
}, | ||
"filter": { | ||
"my_delimited_term_freq": { | ||
"type": "delimited_term_freq", | ||
"delimiter": "^" | ||
} | ||
}, | ||
"analyzer": { | ||
"custom_delimited_analyzer": { | ||
"tokenizer": "keyword_tokenizer", | ||
"filter": ["my_delimited_term_freq"] | ||
} | ||
} | ||
} | ||
}, | ||
"mappings": { | ||
"properties": { | ||
"f1": { | ||
"type": "keyword" | ||
}, | ||
"f2": { | ||
"type": "text", | ||
"analyzer": "custom_delimited_analyzer", | ||
"index_options": "freqs" | ||
} | ||
} | ||
} | ||
} | ||
``` | ||
{% include copy-curl.html %} | ||
|
||
The `test` index uses a keyword tokenizer, a delimited term frequency token filter (where the delimiter is `^`), and a custom analyzer that includes a keyword tokenizer and a delimited term frequency token filter. The mappings specify that the field `f1` is a keyword field and the field `f2` is a text field. The field `f2` uses the custom analyzer defined in the settings for text analysis. Additionally, specifying `index_options` signals to OpenSearch to add the term frequencies to the inverted index. You'll use the term frequencies to give documents with repeated terms a higher score. | ||
|
||
Next, index two documents using bulk upload: | ||
|
||
```json | ||
POST /_bulk?refresh=true | ||
{"index": {"_index": "test", "_id": "doc1"}} | ||
{"f1": "v0|100", "f2": "v1^30"} | ||
{"index": {"_index": "test", "_id": "doc2"}} | ||
{"f2": "v2|100"} | ||
``` | ||
{% include copy-curl.html %} | ||
|
||
The following query searches for all documents in the index and calculates document scores as the term frequency of the term `v1` in the field `f2`: | ||
|
||
```json | ||
GET /test/_search | ||
{ | ||
"query": { | ||
"function_score": { | ||
"query": { | ||
"match_all": {} | ||
}, | ||
"script_score": { | ||
"script": { | ||
"source": "termFreq(params.field, params.term)", | ||
"params": { | ||
"field": "f2", | ||
"term": "v1" | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
``` | ||
{% include copy-curl.html %} | ||
|
||
In the response, document 1 has a score of 30 because the term frequency of the term `v1` in the field `f2` is 30. Document 2 has a score of 0 because the term `v1` does not appear in `f2`: | ||
|
||
```json | ||
{ | ||
"took": 4, | ||
"timed_out": false, | ||
"_shards": { | ||
"total": 1, | ||
"successful": 1, | ||
"skipped": 0, | ||
"failed": 0 | ||
}, | ||
"hits": { | ||
"total": { | ||
"value": 2, | ||
"relation": "eq" | ||
}, | ||
"max_score": 30, | ||
"hits": [ | ||
{ | ||
"_index": "test", | ||
"_id": "doc1", | ||
"_score": 30, | ||
"_source": { | ||
"f1": "v0|100", | ||
"f2": "v1^30" | ||
} | ||
}, | ||
{ | ||
"_index": "test", | ||
"_id": "doc2", | ||
"_score": 0, | ||
"_source": { | ||
"f2": "v2|100" | ||
} | ||
} | ||
] | ||
} | ||
} | ||
``` | ||
|
||
## Parameters | ||
|
||
The following table lists all parameters that the `delimited_term_freq` supports. | ||
|
||
Parameter | Required/Optional | Description | ||
:--- | :--- | :--- | ||
`delimiter` | Optional | The delimiter used to separate tokens from term frequencies. Must be a single non-null character. Default is `|`. |
Oops, something went wrong.