Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport 2.x] [Derived Field] Dynamic FieldType inference based on random sampling of documents #13953

Merged
merged 1 commit into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/

package org.opensearch.index.mapper;

import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.ReaderUtil;
import org.opensearch.common.Randomness;
import org.opensearch.common.xcontent.XContentFactory;
import org.opensearch.common.xcontent.json.JsonXContent;
import org.opensearch.core.common.bytes.BytesReference;
import org.opensearch.core.xcontent.XContentBuilder;
import org.opensearch.search.lookup.SourceLookup;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;

/**
* This class performs type inference by analyzing the _source documents. It uses a random sample of documents to infer the field type, similar to dynamic mapping type guessing logic.
* Unlike guessing based on the first document, where field could be missing, this method generates a random sample to make a more accurate inference.
* This approach is especially useful for handling missing fields, which is common in nested fields within derived fields of object types.
*
* <p>The sample size should be chosen carefully to ensure a high probability of selecting at least one document where the field is present.
* However, it's essential to strike a balance because a large sample size can lead to performance issues since each sample document's _source field is loaded and examined until the field is found.
*
* <p>Determining the sample size ({@code S}) is akin to deciding how many balls to draw from a bin, ensuring a high probability ({@code >=P}) of drawing at least one green ball (documents with the field) from a mixture of {@code R } red balls (documents without the field) and {@code G } green balls:
* <pre>{@code
* P >= 1 - C(R, S) / C(R + G, S)
* }</pre>
* Here, {@code C()} represents the binomial coefficient.
* For a high confidence level, we aim for {@code P >= 0.95 }. For example, with {@code 10^7 } documents where the field is present in {@code 2% } of them, the sample size {@code S } should be around 149 to achieve a probability of {@code 0.95}.
*/
public class FieldTypeInference {
private final IndexReader indexReader;
private final String indexName;
private final MapperService mapperService;
// TODO expose using a index setting
private int sampleSize;
private static final int DEFAULT_SAMPLE_SIZE = 150;
private static final int MAX_SAMPLE_SIZE_ALLOWED = 1000;

public FieldTypeInference(String indexName, MapperService mapperService, IndexReader indexReader) {
this.indexName = indexName;
this.mapperService = mapperService;
this.indexReader = indexReader;
this.sampleSize = DEFAULT_SAMPLE_SIZE;
}

public void setSampleSize(int sampleSize) {
if (sampleSize > MAX_SAMPLE_SIZE_ALLOWED) {
throw new IllegalArgumentException("sample_size should be less than " + MAX_SAMPLE_SIZE_ALLOWED);
}
this.sampleSize = sampleSize;
}

public int getSampleSize() {
return sampleSize;
}

public Mapper infer(ValueFetcher valueFetcher) throws IOException {
RandomSourceValuesGenerator valuesGenerator = new RandomSourceValuesGenerator(sampleSize, indexReader, valueFetcher);
Mapper inferredMapper = null;
while (inferredMapper == null && valuesGenerator.hasNext()) {
List<Object> values = valuesGenerator.next();
if (values == null || values.isEmpty()) {
continue;
}
// always use first value in case of multi value field to infer type
inferredMapper = inferTypeFromObject(values.get(0));
}
return inferredMapper;
}

private Mapper inferTypeFromObject(Object o) throws IOException {
if (o == null) {
return null;
}
DocumentMapper mapper = mapperService.documentMapper();
XContentBuilder builder = XContentFactory.jsonBuilder().startObject().field("field", o).endObject();
BytesReference bytesReference = BytesReference.bytes(builder);
SourceToParse sourceToParse = new SourceToParse(indexName, "_id", bytesReference, JsonXContent.jsonXContent.mediaType());
ParsedDocument parsedDocument = mapper.parse(sourceToParse);
Mapping mapping = parsedDocument.dynamicMappingsUpdate();
return mapping.root.getMapper("field");
}

private static class RandomSourceValuesGenerator implements Iterator<List<Object>> {
private final ValueFetcher valueFetcher;
private final IndexReader indexReader;
private final SourceLookup sourceLookup;
private final int[] docs;
private int iter;
private int leaf;
private final int MAX_ATTEMPTS_TO_GENERATE_RANDOM_SAMPLES = 10000;

public RandomSourceValuesGenerator(int sampleSize, IndexReader indexReader, ValueFetcher valueFetcher) {
this.valueFetcher = valueFetcher;
this.indexReader = indexReader;
sampleSize = Math.min(sampleSize, indexReader.numDocs());
this.docs = getSortedRandomNum(
sampleSize,
indexReader.numDocs(),
Math.max(sampleSize, MAX_ATTEMPTS_TO_GENERATE_RANDOM_SAMPLES)
);
this.iter = 0;
this.leaf = -1;
this.sourceLookup = new SourceLookup();
if (hasNext()) {
setNextLeaf();
}
}

@Override
public boolean hasNext() {
return iter < docs.length && leaf < indexReader.leaves().size();
}

/**
* Ensure hasNext() is called before calling next()
*/
@Override
public List<Object> next() {
int docID = docs[iter] - indexReader.leaves().get(leaf).docBase;
if (docID >= indexReader.leaves().get(leaf).reader().numDocs()) {
setNextLeaf();
}
// deleted docs are getting used to infer type, which should be okay?
sourceLookup.setSegmentAndDocument(indexReader.leaves().get(leaf), docs[iter] - indexReader.leaves().get(leaf).docBase);
try {
iter++;
return valueFetcher.fetchValues(sourceLookup);
} catch (IOException e) {
throw new RuntimeException(e);
}
}

private void setNextLeaf() {
int readerIndex = ReaderUtil.subIndex(docs[iter], indexReader.leaves());
if (readerIndex != leaf) {
leaf = readerIndex;
} else {
// this will only happen when leaves are exhausted and readerIndex will be indexReader.leaves()-1.
leaf++;
}
if (leaf < indexReader.leaves().size()) {
valueFetcher.setNextReader(indexReader.leaves().get(leaf));
}
}

private static int[] getSortedRandomNum(int sampleSize, int upperBound, int attempts) {
Set<Integer> generatedNumbers = new TreeSet<>();
Random random = Randomness.get();
int itr = 0;
if (upperBound <= 10 * sampleSize) {
List<Integer> numberList = new ArrayList<>();
for (int i = 0; i < upperBound; i++) {
numberList.add(i);
}
Collections.shuffle(numberList, random);
generatedNumbers.addAll(numberList.subList(0, sampleSize));
} else {
while (generatedNumbers.size() < sampleSize && itr++ < attempts) {
int randomNumber = random.nextInt(upperBound);
generatedNumbers.add(randomNumber);
}
}
return generatedNumbers.stream().mapToInt(Integer::valueOf).toArray();
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/

package org.opensearch.index.mapper;

import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.store.Directory;
import org.opensearch.common.lucene.Lucene;
import org.opensearch.core.index.Index;
import org.opensearch.index.query.QueryShardContext;
import org.opensearch.search.lookup.SourceLookup;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import static org.mockito.Mockito.when;

public class FieldTypeInferenceTests extends MapperServiceTestCase {

private static final Map<String, List<Object>> documentMap;
static {
List<Object> listWithNull = new ArrayList<>();
listWithNull.add(null);
documentMap = new HashMap<>();
documentMap.put("text_field", List.of("The quick brown fox jumps over the lazy dog."));
documentMap.put("int_field", List.of(789));
documentMap.put("float_field", List.of(123.45));
documentMap.put("date_field_1", List.of("2024-05-12T15:45:00Z"));
documentMap.put("date_field_2", List.of("2024-05-12"));
documentMap.put("boolean_field", List.of(true));
documentMap.put("null_field", listWithNull);
documentMap.put("array_field_int", List.of(100, 200, 300, 400, 500));
documentMap.put("array_field_text", List.of("100", "200"));
documentMap.put("object_type", List.of(Map.of("foo", Map.of("bar", 10))));
}

public void testJsonSupportedTypes() throws IOException {
MapperService mapperService = createMapperService(topMapping(b -> {}));
QueryShardContext queryShardContext = createQueryShardContext(mapperService);
when(queryShardContext.index()).thenReturn(new Index("test_index", "uuid"));
int totalDocs = 10000;
int docsPerLeafCount = 1000;
try (Directory dir = newDirectory()) {
IndexWriter iw = new IndexWriter(dir, new IndexWriterConfig(Lucene.STANDARD_ANALYZER));
Document d = new Document();
for (int i = 0; i < totalDocs; i++) {
iw.addDocument(d);
if ((i + 1) % docsPerLeafCount == 0) {
iw.commit();
}
}
try (IndexReader reader = DirectoryReader.open(iw)) {
iw.close();
FieldTypeInference typeInference = new FieldTypeInference("test_index", queryShardContext.getMapperService(), reader);
String[] fieldName = { "text_field" };
Mapper mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("text", mapper.typeName());

fieldName[0] = "int_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("long", mapper.typeName());

fieldName[0] = "float_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("float", mapper.typeName());

fieldName[0] = "date_field_1";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("date", mapper.typeName());

fieldName[0] = "date_field_2";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("date", mapper.typeName());

fieldName[0] = "boolean_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("boolean", mapper.typeName());

fieldName[0] = "array_field_int";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("long", mapper.typeName());

fieldName[0] = "array_field_text";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("text", mapper.typeName());

fieldName[0] = "object_type";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("object", mapper.typeName());

fieldName[0] = "null_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertNull(mapper);

// If field is missing ensure that sample docIDs generated for inference are ordered and are in bounds
fieldName[0] = "missing_field";
List<List<Integer>> docsEvaluated = new ArrayList<>();
int[] totalDocsEvaluated = { 0 };
typeInference.setSampleSize(50);
mapper = typeInference.infer(new ValueFetcher() {
@Override
public List<Object> fetchValues(SourceLookup lookup) throws IOException {
docsEvaluated.get(docsEvaluated.size() - 1).add(lookup.docId());
totalDocsEvaluated[0]++;
return documentMap.get(fieldName[0]);
}

@Override
public void setNextReader(LeafReaderContext leafReaderContext) {
docsEvaluated.add(new ArrayList<>());
}
});
assertNull(mapper);
assertEquals(typeInference.getSampleSize(), totalDocsEvaluated[0]);
for (List<Integer> docsPerLeaf : docsEvaluated) {
for (int j = 0; j < docsPerLeaf.size() - 1; j++) {
assertTrue(docsPerLeaf.get(j) < docsPerLeaf.get(j + 1));
}
if (!docsPerLeaf.isEmpty()) {
assertTrue(docsPerLeaf.get(0) >= 0 && docsPerLeaf.get(docsPerLeaf.size() - 1) < docsPerLeafCount);
}
}
}
}
}

public void testDeleteAllDocs() throws IOException {
MapperService mapperService = createMapperService(topMapping(b -> {}));
QueryShardContext queryShardContext = createQueryShardContext(mapperService);
when(queryShardContext.index()).thenReturn(new Index("test_index", "uuid"));
int totalDocs = 10000;
int docsPerLeafCount = 1000;
try (Directory dir = newDirectory()) {
IndexWriter iw = new IndexWriter(dir, new IndexWriterConfig(Lucene.STANDARD_ANALYZER));
Document d = new Document();
for (int i = 0; i < totalDocs; i++) {
iw.addDocument(d);
if ((i + 1) % docsPerLeafCount == 0) {
iw.commit();
}
}
iw.deleteAll();
iw.commit();

try (IndexReader reader = DirectoryReader.open(iw)) {
iw.close();
FieldTypeInference typeInference = new FieldTypeInference("test_index", queryShardContext.getMapperService(), reader);
String[] fieldName = { "text_field" };
Mapper mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertNull(mapper);
}
}
}

public void testZeroDoc() throws IOException {
MapperService mapperService = createMapperService(topMapping(b -> {}));
QueryShardContext queryShardContext = createQueryShardContext(mapperService);
when(queryShardContext.index()).thenReturn(new Index("test_index", "uuid"));
try (Directory dir = newDirectory()) {
IndexWriter iw = new IndexWriter(dir, new IndexWriterConfig(Lucene.STANDARD_ANALYZER));
try (IndexReader reader = DirectoryReader.open(iw)) {
iw.close();
FieldTypeInference typeInference = new FieldTypeInference("test_index", queryShardContext.getMapperService(), reader);
String[] fieldName = { "text_field" };
Mapper mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertNull(mapper);
}
}
}

public void testSampleGeneration() throws IOException {
MapperService mapperService = createMapperService(topMapping(b -> {}));
QueryShardContext queryShardContext = createQueryShardContext(mapperService);
when(queryShardContext.index()).thenReturn(new Index("test_index", "uuid"));
int totalDocs = 10000;
int docsPerLeafCount = 1000;
try (Directory dir = newDirectory()) {
IndexWriter iw = new IndexWriter(dir, new IndexWriterConfig(Lucene.STANDARD_ANALYZER));
Document d = new Document();
for (int i = 0; i < totalDocs; i++) {
iw.addDocument(d);
if ((i + 1) % docsPerLeafCount == 0) {
iw.commit();
}
}
try (IndexReader reader = DirectoryReader.open(iw)) {
iw.close();
FieldTypeInference typeInference = new FieldTypeInference("test_index", queryShardContext.getMapperService(), reader);
typeInference.setSampleSize(1000 - 1);
typeInference.infer(lookup -> documentMap.get("unknown_field"));
assertThrows(IllegalArgumentException.class, () -> typeInference.setSampleSize(1000 + 1));
typeInference.setSampleSize(1000);
typeInference.infer(lookup -> documentMap.get("unknown_field"));
}
}
}
}
Loading