Skip to content

Commit

Permalink
Dynamic FieldType inference based on random sampling of documents
Browse files Browse the repository at this point in the history
Signed-off-by: Rishabh Maurya <[email protected]>
  • Loading branch information
rishabhmaurya committed May 24, 2024
1 parent 56d8dc6 commit ec47427
Show file tree
Hide file tree
Showing 2 changed files with 315 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/

package org.opensearch.index.mapper;

import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.LeafReaderContext;
import org.opensearch.common.xcontent.XContentFactory;
import org.opensearch.common.xcontent.json.JsonXContent;
import org.opensearch.core.common.bytes.BytesReference;
import org.opensearch.core.xcontent.XContentBuilder;
import org.opensearch.search.lookup.SourceLookup;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Random;
import java.util.Set;

/**
* This class performs type inference by analyzing the _source documents. It uses a random sample of documents to infer the field type, similar to dynamic mapping type guessing logic.
* Unlike guessing based on the first document, where field could be missing, this method generates a random sample to make a more accurate inference.
* This approach is especially useful for handling missing fields, which is common in nested fields within derived fields of object types.
*
* <p>The sample size should be chosen carefully to ensure a high probability of selecting at least one document where the field is present.
* However, it's essential to strike a balance because a large sample size can lead to performance issues since each sample document's _source field is loaded and examined until the field is found.
*
* <p>Determining the sample size (<var>S</var>) is akin to deciding how many balls to draw from a bin, ensuring a high probability ((<var>&gt;=P</var>)) of drawing at least one green ball (documents with the field) from a mixture of <var>R</var> red balls (documents without the field) and <var>G</var> green balls:
* <pre>{@code
* P >= 1 - C(R, S) / C(R + G, S)
* }</pre>
* Here, <var>C()</var> represents the binomial coefficient.
* For a high confidence level, we aim for <var>P &gt;= 0.95</var>. For example, with 10^7 documents where the field is present in 2% of them, the sample size <var>S</var> should be around 149 to achieve a probability of 0.95.
*/
public class FieldTypeInference {
private final IndexReader indexReader;
private final String indexName;
private final MapperService mapperService;
// TODO expose using a index setting
private int sampleSize;
private static final int DEFAULT_SAMPLE_SIZE = 150;
private static final int MAX_SAMPLE_SIZE_ALLOWED = 1000;

public FieldTypeInference(String indexName, MapperService mapperService, IndexReader indexReader) {
this.indexName = indexName;
this.mapperService = mapperService;
this.indexReader = indexReader;
this.sampleSize = DEFAULT_SAMPLE_SIZE;
}

public void setSampleSize(int sampleSize) {
this.sampleSize = Math.min(sampleSize, MAX_SAMPLE_SIZE_ALLOWED);
}

public int getSampleSize() {
return sampleSize;
}

public Mapper infer(ValueFetcher valueFetcher) throws IOException {
RandomSourceValuesGenerator valuesGenerator = new RandomSourceValuesGenerator(sampleSize, indexReader, valueFetcher);
Mapper inferredMapper = null;
while (inferredMapper == null && valuesGenerator.hasNext()) {
List<Object> values = valuesGenerator.next();
if (values == null || values.isEmpty()) {
continue;
}
// always use first value in case of multi value field to infer type
inferredMapper = inferTypeFromObject(values.get(0));
}
return inferredMapper;
}

private Mapper inferTypeFromObject(Object o) throws IOException {
if (o == null) {
return null;
}
DocumentMapper mapper = mapperService.documentMapper();
XContentBuilder builder = XContentFactory.jsonBuilder().startObject().field("field", o).endObject();
BytesReference bytesReference = BytesReference.bytes(builder);
SourceToParse sourceToParse = new SourceToParse(indexName, "_id", bytesReference, JsonXContent.jsonXContent.mediaType());
ParsedDocument parsedDocument = mapper.parse(sourceToParse);
Mapping mapping = parsedDocument.dynamicMappingsUpdate();
return mapping.root.getMapper("field");
}

private static class RandomSourceValuesGenerator implements Iterator<List<Object>> {
private final ValueFetcher valueFetcher;
private final IndexReader indexReader;
private final SourceLookup sourceLookup;
private final int numLeaves;
private final int[] docs;
private int iter;
private int offset;
private LeafReaderContext leafReaderContext;
private int leaf;
private final int MAX_ATTEMPTS_TO_GENERATE_RANDOM_SAMPLES = 10000;

public RandomSourceValuesGenerator(int sampleSize, IndexReader indexReader, ValueFetcher valueFetcher) {
this.valueFetcher = valueFetcher;
this.indexReader = indexReader;
sampleSize = Math.min(sampleSize, indexReader.numDocs());
this.docs = getSortedRandomNum(
sampleSize,
indexReader.numDocs(),
Math.max(sampleSize, MAX_ATTEMPTS_TO_GENERATE_RANDOM_SAMPLES)
);
this.iter = 0;
this.offset = 0;
this.leaf = 0;
this.numLeaves = indexReader.leaves().size();
this.sourceLookup = new SourceLookup();
this.leafReaderContext = indexReader.leaves().get(leaf);
valueFetcher.setNextReader(leafReaderContext);
}

@Override
public boolean hasNext() {
return iter < docs.length && leaf < numLeaves;
}

/**
* Ensure hasNext() is called before calling next()
*/
@Override
public List<Object> next() {
int docID = docs[iter] - offset;
if (docID >= leafReaderContext.reader().numDocs()) {
setNextLeaf();
return next();
}
// deleted docs are getting used to infer type, which should be okay?
sourceLookup.setSegmentAndDocument(leafReaderContext, docID);
try {
iter++;
return valueFetcher.fetchValues(sourceLookup);
} catch (IOException e) {
throw new RuntimeException(e);
}
}

private void setNextLeaf() {
offset += leafReaderContext.reader().numDocs();
leaf++;
if (leaf < numLeaves) {
leafReaderContext = indexReader.leaves().get(leaf);
valueFetcher.setNextReader(leafReaderContext);
}
}

private static int[] getSortedRandomNum(int sampleSize, int upperBound, int attempts) {
Set<Integer> generatedNumbers = new HashSet<>();
Random random = new Random();
int itr = 0;
while (generatedNumbers.size() < sampleSize && itr++ < attempts) {
int randomNumber = random.nextInt(upperBound);
generatedNumbers.add(randomNumber);
}
int[] result = new int[generatedNumbers.size()];
int i = 0;
for (int number : generatedNumbers) {
result[i++] = number;
}
Arrays.sort(result);
return result;
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/

package org.opensearch.index.mapper;

import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.store.Directory;
import org.opensearch.common.lucene.Lucene;
import org.opensearch.core.index.Index;
import org.opensearch.index.query.QueryShardContext;
import org.opensearch.search.lookup.SourceLookup;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import static org.mockito.Mockito.when;

public class FieldTypeInferenceTests extends MapperServiceTestCase {

private static final Map<String, List<Object>> documentMap;
static {
List<Object> listWithNull = new ArrayList<>();
listWithNull.add(null);
documentMap = new HashMap<>();
documentMap.put("text_field", List.of("The quick brown fox jumps over the lazy dog."));
documentMap.put("int_field", List.of(789));
documentMap.put("float_field", List.of(123.45));
documentMap.put("date_field_1", List.of("2024-05-12T15:45:00Z"));
documentMap.put("date_field_2", List.of("2024-05-12"));
documentMap.put("boolean_field", List.of(true));
documentMap.put("null_field", listWithNull);
documentMap.put("array_field_int", List.of(100, 200, 300, 400, 500));
documentMap.put("array_field_text", List.of("100", "200"));
documentMap.put("object_type", List.of(Map.of("foo", Map.of("bar", 10))));
}

public void testJsonSupportedTypes() throws IOException {
MapperService mapperService = createMapperService(topMapping(b -> {}));
QueryShardContext queryShardContext = createQueryShardContext(mapperService);
when(queryShardContext.index()).thenReturn(new Index("test_index", "uuid"));
int totalDocs = 10000;
int docsPerLeafCount = 1000;
int leaves = 0;
try (Directory dir = newDirectory()) {
IndexWriter iw = new IndexWriter(dir, new IndexWriterConfig(Lucene.STANDARD_ANALYZER));
Document d = new Document();
for (int i = 0; i < totalDocs; i++) {
iw.addDocument(d);
if ((i + 1) % docsPerLeafCount == 0) {
iw.commit();
leaves++;
}
}
try (IndexReader reader = DirectoryReader.open(iw)) {
iw.close();
FieldTypeInference typeInference = new FieldTypeInference("test_index", queryShardContext.getMapperService(), reader);
String[] fieldName = { "text_field" };
Mapper mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("text", mapper.typeName());

fieldName[0] = "int_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("long", mapper.typeName());

fieldName[0] = "float_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("float", mapper.typeName());

fieldName[0] = "date_field_1";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("date", mapper.typeName());

fieldName[0] = "date_field_2";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("date", mapper.typeName());

fieldName[0] = "boolean_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("boolean", mapper.typeName());

fieldName[0] = "array_field_int";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("long", mapper.typeName());

fieldName[0] = "array_field_text";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("text", mapper.typeName());

fieldName[0] = "object_type";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertEquals("object", mapper.typeName());

fieldName[0] = "null_field";
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0]));
assertNull(mapper);

// If field is missing ensure that sample docIDs generated for inference are ordered and are in bounds
fieldName[0] = "missing_field";
List<List<Integer>> docsEvaluated = new ArrayList<>();
int[] totalDocsEvaluated = { 0 };
typeInference.setSampleSize(50);
mapper = typeInference.infer(new ValueFetcher() {
@Override
public List<Object> fetchValues(SourceLookup lookup) throws IOException {
docsEvaluated.get(docsEvaluated.size() - 1).add(lookup.docId());
totalDocsEvaluated[0]++;
return documentMap.get(fieldName[0]);
}

@Override
public void setNextReader(LeafReaderContext leafReaderContext) {
docsEvaluated.add(new ArrayList<>());
}
});
assertNull(mapper);
assertEquals(typeInference.getSampleSize(), totalDocsEvaluated[0]);
for (List<Integer> docsPerLeaf : docsEvaluated) {
for (int j = 0; j < docsPerLeaf.size() - 1; j++) {
assertTrue(docsPerLeaf.get(j) < docsPerLeaf.get(j + 1));
}
if (!docsPerLeaf.isEmpty()) {
assertTrue(docsPerLeaf.get(0) >= 0 && docsPerLeaf.get(docsPerLeaf.size() - 1) < docsPerLeafCount);
}
}
}
}
}
}

0 comments on commit ec47427

Please sign in to comment.