-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Dynamic FieldType inference based on random sampling of documents
Signed-off-by: Rishabh Maurya <[email protected]>
- Loading branch information
1 parent
f30e0e0
commit b16cdfc
Showing
2 changed files
with
315 additions
and
0 deletions.
There are no files selected for viewing
174 changes: 174 additions & 0 deletions
174
server/src/main/java/org/opensearch/index/mapper/FieldTypeInference.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
/* | ||
* SPDX-License-Identifier: Apache-2.0 | ||
* | ||
* The OpenSearch Contributors require contributions made to | ||
* this file be licensed under the Apache-2.0 license or a | ||
* compatible open source license. | ||
*/ | ||
|
||
package org.opensearch.index.mapper; | ||
|
||
import org.apache.lucene.index.IndexReader; | ||
import org.apache.lucene.index.LeafReaderContext; | ||
import org.opensearch.common.xcontent.XContentFactory; | ||
import org.opensearch.common.xcontent.json.JsonXContent; | ||
import org.opensearch.core.common.bytes.BytesReference; | ||
import org.opensearch.core.xcontent.XContentBuilder; | ||
import org.opensearch.search.lookup.SourceLookup; | ||
|
||
import java.io.IOException; | ||
import java.util.Arrays; | ||
import java.util.HashSet; | ||
import java.util.Iterator; | ||
import java.util.List; | ||
import java.util.Random; | ||
import java.util.Set; | ||
|
||
/** | ||
* This class performs type inference by analyzing the _source documents. It uses a random sample of documents to infer the field type, similar to dynamic mapping type guessing logic. | ||
* Unlike guessing based on the first document, where field could be missing, this method generates a random sample to make a more accurate inference. | ||
* This approach is especially useful for handling missing fields, which is common in nested fields within derived fields of object types. | ||
* | ||
* <p>The sample size should be chosen carefully to ensure a high probability of selecting at least one document where the field is present. | ||
* However, it's essential to strike a balance because a large sample size can lead to performance issues since each sample document's _source field is loaded and examined until the field is found. | ||
* | ||
* <p>Determining the sample size (<var>S</var>) is akin to deciding how many balls to draw from a bin, ensuring a high probability ((<var>>=P</var>)) of drawing at least one green ball (documents with the field) from a mixture of <var>R</var> red balls (documents without the field) and <var>G</var> green balls: | ||
* <pre>{@code | ||
* P >= 1 - C(R, S) / C(R + G, S) | ||
* }</pre> | ||
* Here, <var>C()</var> represents the binomial coefficient. | ||
* For a high confidence level, we aim for <var>P >= 0.95</var>. For example, with 10^7 documents where the field is present in 2% of them, the sample size <var>S</var> should be around 149 to achieve a probability of 0.95. | ||
*/ | ||
public class FieldTypeInference { | ||
private final IndexReader indexReader; | ||
private final String indexName; | ||
private final MapperService mapperService; | ||
// TODO expose using a index setting | ||
private int sampleSize; | ||
private static final int DEFAULT_SAMPLE_SIZE = 150; | ||
private static final int MAX_SAMPLE_SIZE_ALLOWED = 1000; | ||
|
||
public FieldTypeInference(String indexName, MapperService mapperService, IndexReader indexReader) { | ||
this.indexName = indexName; | ||
this.mapperService = mapperService; | ||
this.indexReader = indexReader; | ||
this.sampleSize = DEFAULT_SAMPLE_SIZE; | ||
} | ||
|
||
public void setSampleSize(int sampleSize) { | ||
this.sampleSize = Math.min(sampleSize, MAX_SAMPLE_SIZE_ALLOWED); | ||
} | ||
|
||
public int getSampleSize() { | ||
return sampleSize; | ||
} | ||
|
||
public Mapper infer(ValueFetcher valueFetcher) throws IOException { | ||
RandomSourceValuesGenerator valuesGenerator = new RandomSourceValuesGenerator(sampleSize, indexReader, valueFetcher); | ||
Mapper inferredMapper = null; | ||
while (inferredMapper == null && valuesGenerator.hasNext()) { | ||
List<Object> values = valuesGenerator.next(); | ||
if (values == null || values.isEmpty()) { | ||
continue; | ||
} | ||
// always use first value in case of multi value field to infer type | ||
inferredMapper = inferTypeFromObject(values.get(0)); | ||
} | ||
return inferredMapper; | ||
} | ||
|
||
private Mapper inferTypeFromObject(Object o) throws IOException { | ||
if (o == null) { | ||
return null; | ||
} | ||
DocumentMapper mapper = mapperService.documentMapper(); | ||
XContentBuilder builder = XContentFactory.jsonBuilder().startObject().field("field", o).endObject(); | ||
BytesReference bytesReference = BytesReference.bytes(builder); | ||
SourceToParse sourceToParse = new SourceToParse(indexName, "_id", bytesReference, JsonXContent.jsonXContent.mediaType()); | ||
ParsedDocument parsedDocument = mapper.parse(sourceToParse); | ||
Mapping mapping = parsedDocument.dynamicMappingsUpdate(); | ||
return mapping.root.getMapper("field"); | ||
} | ||
|
||
private static class RandomSourceValuesGenerator implements Iterator<List<Object>> { | ||
private final ValueFetcher valueFetcher; | ||
private final IndexReader indexReader; | ||
private final SourceLookup sourceLookup; | ||
private final int numLeaves; | ||
private final int[] docs; | ||
private int iter; | ||
private int offset; | ||
private LeafReaderContext leafReaderContext; | ||
private int leaf; | ||
private final int MAX_ATTEMPTS_TO_GENERATE_RANDOM_SAMPLES = 10000; | ||
|
||
public RandomSourceValuesGenerator(int sampleSize, IndexReader indexReader, ValueFetcher valueFetcher) { | ||
this.valueFetcher = valueFetcher; | ||
this.indexReader = indexReader; | ||
sampleSize = Math.min(sampleSize, indexReader.numDocs()); | ||
this.docs = getSortedRandomNum( | ||
sampleSize, | ||
indexReader.numDocs(), | ||
Math.max(sampleSize, MAX_ATTEMPTS_TO_GENERATE_RANDOM_SAMPLES) | ||
); | ||
this.iter = 0; | ||
this.offset = 0; | ||
this.leaf = 0; | ||
this.numLeaves = indexReader.leaves().size(); | ||
this.sourceLookup = new SourceLookup(); | ||
this.leafReaderContext = indexReader.leaves().get(leaf); | ||
valueFetcher.setNextReader(leafReaderContext); | ||
} | ||
|
||
@Override | ||
public boolean hasNext() { | ||
return iter < docs.length && leaf < numLeaves; | ||
} | ||
|
||
/** | ||
* Ensure hasNext() is called before calling next() | ||
*/ | ||
@Override | ||
public List<Object> next() { | ||
int docID = docs[iter] - offset; | ||
if (docID >= leafReaderContext.reader().numDocs()) { | ||
setNextLeaf(); | ||
return next(); | ||
} | ||
// deleted docs are getting used to infer type, which should be okay? | ||
sourceLookup.setSegmentAndDocument(leafReaderContext, docID); | ||
try { | ||
iter++; | ||
return valueFetcher.fetchValues(sourceLookup); | ||
} catch (IOException e) { | ||
throw new RuntimeException(e); | ||
} | ||
} | ||
|
||
private void setNextLeaf() { | ||
offset += leafReaderContext.reader().numDocs(); | ||
leaf++; | ||
if (leaf < numLeaves) { | ||
leafReaderContext = indexReader.leaves().get(leaf); | ||
valueFetcher.setNextReader(leafReaderContext); | ||
} | ||
} | ||
|
||
private static int[] getSortedRandomNum(int sampleSize, int upperBound, int attempts) { | ||
Set<Integer> generatedNumbers = new HashSet<>(); | ||
Random random = new Random(); | ||
int itr = 0; | ||
while (generatedNumbers.size() < sampleSize && itr++ < attempts) { | ||
int randomNumber = random.nextInt(upperBound); | ||
generatedNumbers.add(randomNumber); | ||
} | ||
int[] result = new int[generatedNumbers.size()]; | ||
int i = 0; | ||
for (int number : generatedNumbers) { | ||
result[i++] = number; | ||
} | ||
Arrays.sort(result); | ||
return result; | ||
} | ||
} | ||
} |
141 changes: 141 additions & 0 deletions
141
server/src/test/java/org/opensearch/index/mapper/FieldTypeInferenceTests.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
/* | ||
* SPDX-License-Identifier: Apache-2.0 | ||
* | ||
* The OpenSearch Contributors require contributions made to | ||
* this file be licensed under the Apache-2.0 license or a | ||
* compatible open source license. | ||
*/ | ||
|
||
package org.opensearch.index.mapper; | ||
|
||
import org.apache.lucene.document.Document; | ||
import org.apache.lucene.index.DirectoryReader; | ||
import org.apache.lucene.index.IndexReader; | ||
import org.apache.lucene.index.IndexWriter; | ||
import org.apache.lucene.index.IndexWriterConfig; | ||
import org.apache.lucene.index.LeafReaderContext; | ||
import org.apache.lucene.store.Directory; | ||
import org.opensearch.common.lucene.Lucene; | ||
import org.opensearch.core.index.Index; | ||
import org.opensearch.index.query.QueryShardContext; | ||
import org.opensearch.search.lookup.SourceLookup; | ||
|
||
import java.io.IOException; | ||
import java.util.ArrayList; | ||
import java.util.HashMap; | ||
import java.util.List; | ||
import java.util.Map; | ||
|
||
import static org.mockito.Mockito.when; | ||
|
||
public class FieldTypeInferenceTests extends MapperServiceTestCase { | ||
|
||
private static final Map<String, List<Object>> documentMap; | ||
static { | ||
List<Object> listWithNull = new ArrayList<>(); | ||
listWithNull.add(null); | ||
documentMap = new HashMap<>(); | ||
documentMap.put("text_field", List.of("The quick brown fox jumps over the lazy dog.")); | ||
documentMap.put("int_field", List.of(789)); | ||
documentMap.put("float_field", List.of(123.45)); | ||
documentMap.put("date_field_1", List.of("2024-05-12T15:45:00Z")); | ||
documentMap.put("date_field_2", List.of("2024-05-12")); | ||
documentMap.put("boolean_field", List.of(true)); | ||
documentMap.put("null_field", listWithNull); | ||
documentMap.put("array_field_int", List.of(100, 200, 300, 400, 500)); | ||
documentMap.put("array_field_text", List.of("100", "200")); | ||
documentMap.put("object_type", List.of(Map.of("foo", Map.of("bar", 10)))); | ||
} | ||
|
||
public void testJsonSupportedTypes() throws IOException { | ||
MapperService mapperService = createMapperService(topMapping(b -> {})); | ||
QueryShardContext queryShardContext = createQueryShardContext(mapperService); | ||
when(queryShardContext.index()).thenReturn(new Index("test_index", "uuid")); | ||
int totalDocs = 10000; | ||
int docsPerLeafCount = 1000; | ||
int leaves = 0; | ||
try (Directory dir = newDirectory()) { | ||
IndexWriter iw = new IndexWriter(dir, new IndexWriterConfig(Lucene.STANDARD_ANALYZER)); | ||
Document d = new Document(); | ||
for (int i = 0; i < totalDocs; i++) { | ||
iw.addDocument(d); | ||
if ((i + 1) % docsPerLeafCount == 0) { | ||
iw.commit(); | ||
leaves++; | ||
} | ||
} | ||
try (IndexReader reader = DirectoryReader.open(iw)) { | ||
iw.close(); | ||
FieldTypeInference typeInference = new FieldTypeInference("test_index", queryShardContext.getMapperService(), reader); | ||
String[] fieldName = { "text_field" }; | ||
Mapper mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("text", mapper.typeName()); | ||
|
||
fieldName[0] = "int_field"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("long", mapper.typeName()); | ||
|
||
fieldName[0] = "float_field"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("float", mapper.typeName()); | ||
|
||
fieldName[0] = "date_field_1"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("date", mapper.typeName()); | ||
|
||
fieldName[0] = "date_field_2"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("date", mapper.typeName()); | ||
|
||
fieldName[0] = "boolean_field"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("boolean", mapper.typeName()); | ||
|
||
fieldName[0] = "array_field_int"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("long", mapper.typeName()); | ||
|
||
fieldName[0] = "array_field_text"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("text", mapper.typeName()); | ||
|
||
fieldName[0] = "object_type"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertEquals("object", mapper.typeName()); | ||
|
||
fieldName[0] = "null_field"; | ||
mapper = typeInference.infer(lookup -> documentMap.get(fieldName[0])); | ||
assertNull(mapper); | ||
|
||
// If field is missing ensure that sample docIDs generated for inference are ordered and are in bounds | ||
fieldName[0] = "missing_field"; | ||
List<List<Integer>> docsEvaluated = new ArrayList<>(); | ||
int[] totalDocsEvaluated = { 0 }; | ||
typeInference.setSampleSize(50); | ||
mapper = typeInference.infer(new ValueFetcher() { | ||
@Override | ||
public List<Object> fetchValues(SourceLookup lookup) throws IOException { | ||
docsEvaluated.get(docsEvaluated.size() - 1).add(lookup.docId()); | ||
totalDocsEvaluated[0]++; | ||
return documentMap.get(fieldName[0]); | ||
} | ||
|
||
@Override | ||
public void setNextReader(LeafReaderContext leafReaderContext) { | ||
docsEvaluated.add(new ArrayList<>()); | ||
} | ||
}); | ||
assertNull(mapper); | ||
assertEquals(typeInference.getSampleSize(), totalDocsEvaluated[0]); | ||
for (List<Integer> docsPerLeaf : docsEvaluated) { | ||
for (int j = 0; j < docsPerLeaf.size() - 1; j++) { | ||
assertTrue(docsPerLeaf.get(j) < docsPerLeaf.get(j + 1)); | ||
} | ||
if (!docsPerLeaf.isEmpty()) { | ||
assertTrue(docsPerLeaf.get(0) >= 0 && docsPerLeaf.get(docsPerLeaf.size() - 1) < docsPerLeafCount); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} |