-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added code for re-extracting spikes from raw data
- Loading branch information
Showing
4 changed files
with
172 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
|
||
|
||
%% load raw data | ||
|
||
set(0,'DefaultFigureWindowStyle','docked'); % fix matlab's figure positioning bug | ||
|
||
% raw data available on | ||
% https://drive.google.com/drive/folders/1CwFcErgp3F3D6I2TB_hTtW1JAQB21TAC?usp=sharing | ||
% | ||
datapath='/home/jvoigts/Desktop/TT13_continuous_3/' | ||
|
||
out_dir='/home/jvoigts/Desktop/TT13_continuous_3/'; | ||
out_name = 'marie_rsc_test.mat'; | ||
|
||
source_channels=[40 40 38 36]; | ||
|
||
data_raw=[]; | ||
for ch=source_cahnnels % grab 4 channels of raw data from one tetrode | ||
fname=sprintf('100_CH%d.continuous',ch) | ||
[data, timestamps, info]=load_open_ephys_data_faster(fullfile(datapath,fname)); | ||
data_raw(:,end+1) = data; | ||
end; | ||
|
||
data_raw=data_raw.*info.header.bitVolts; | ||
fs = info.header.sampleRate; | ||
|
||
%data_raw=data_raw(1:30000,:); % cut away some data for faster testing | ||
|
||
%% plot | ||
|
||
plotlim=50000; | ||
figure(1); | ||
clf; | ||
hold on; | ||
plot(data_raw(1:plotlim,:)); | ||
|
||
|
||
%% filter | ||
|
||
clf; hold on; | ||
[b,a] = butter(3, [300 3000]/(fs/2)); % choose filter (normalize bp freq. to nyquist freq.) | ||
|
||
data_bp=filtfilt(b,a,data_raw); %use zero phase filter | ||
|
||
%% plot filtered | ||
offset=plotlim*0; | ||
clf; | ||
plot(data_bp([1:plotlim]+offset,:)); | ||
hold on; | ||
|
||
%% find treshold crossings | ||
treshold=-6; | ||
crossed= min(data_bp,[],2)<-treshold; % trigger if _any_ channel crosses in neg. direction | ||
|
||
spike_onsets=find(diff(crossed)==1); | ||
|
||
length_sec=size(data,1)/fs; | ||
fprintf('got %d candidate events in %dmin of data, ~%.2f Hz\n',numel(spike_onsets),round(length_sec/60),numel(spike_onsets)/length_sec); | ||
|
||
%% plot some spike onsets | ||
for i=1:100%numel(spike_onsets) | ||
if(spike_onsets(i)<plotlim) | ||
plot([1 1].*spike_onsets(i),[-1 1].*treshold*2,'k--') | ||
end; | ||
end; | ||
|
||
|
||
%% extract spike waveforms and make some features | ||
|
||
spike_window=[1:32]-5; % grab some pre-treshold crossign samples | ||
|
||
spikes=[]; | ||
spikes.waveforms=zeros(numel(spike_onsets),4*numel(spike_window)); % pre-allocate memory | ||
spikes.peakamps=zeros(numel(spike_onsets),4); | ||
spikes.times = spike_onsets/(fs/1000); | ||
|
||
for i=1:numel(spike_onsets) | ||
this_spike=(data_bp(spike_onsets(i)+spike_window,:)); | ||
|
||
spikes.waveforms(i,:)= this_spike(:);% grab entire waveform | ||
spikes.peakamps(i,:)=min(this_spike); % grab 4 peak amplitudes | ||
end; | ||
|
||
%% make into and save as simpleclust compatible file | ||
mua=[]; | ||
mua.waveforms=spikes.waveforms; | ||
mua.sourcechannel = source_channels; | ||
mua.ts = spike_onsets/info.header.sampleRate; | ||
mua.ts_spike=([1:size(spikes.waveforms,2)]-1)./info.header.sampleRate; | ||
mua.ncontacts=4; | ||
|
||
save(fullfile(out_dir,[out_name,'.mat']),'mua'); | ||
|
||
|
||
%% BELOW HERE IS A VERY MINIMAL SPIKE SORTER | ||
|
||
%% plot peak to peak amplitudes | ||
clf; hold on; | ||
plot(spikes.peakamps(:,2),spikes.peakamps(:,4),'.'); | ||
daspect([1 1 1]); | ||
|
||
%% initialize all cluster assignments to 1 | ||
spikes.cluster=ones(numel(spike_onsets),1); | ||
|
||
%% manual spike sorter | ||
% cluster 0 shall be the noise cluster (dont plot this one) | ||
run =1; | ||
|
||
projections=[1 2; 1 3; 1 4; 2 3; 2 4; 3 4]; % possible feature projections | ||
use_projection=1; | ||
|
||
cluster_selected=2; spike_selected=1; | ||
|
||
while run | ||
dat_x=spikes.peakamps(:,projections(use_projection,1)); | ||
dat_y=spikes.peakamps(:,projections(use_projection,2)); | ||
|
||
clf; | ||
subplot(2,3,1); hold on;% plot median waveform | ||
plot(quantile(spikes.waveforms(spikes.cluster==cluster_selected,:),.2),'g'); | ||
plot(quantile(spikes.waveforms(spikes.cluster==cluster_selected,:),.5),'k'); | ||
plot(quantile(spikes.waveforms(spikes.cluster==cluster_selected,:),.8),'g'); | ||
plot(spikes.waveforms(spike_selected,:),'r'); % also plot currently selected spike waveform | ||
|
||
title('waveforms from cluster'); | ||
|
||
subplot(2,3,4); hold on;% plot isi distribution | ||
isi = diff(spikes.times(spikes.cluster==cluster_selected)); | ||
bins=linspace(0.5,15,20); | ||
h= hist(isi,bins); h(end)=0; | ||
stairs(bins,h); | ||
title('ISI histogram'); xlabel('isi(ms)'); | ||
|
||
ax=subplot(2,3,[2 3 5 6]); hold on; % plot main feature display | ||
ii=spikes.cluster>0; % dont plot noise cluster | ||
scatter(dat_x(ii),dat_y(ii),(0.5+(spikes.cluster(ii)==cluster_selected))*20,spikes.cluster(ii)*2,'filled'); | ||
plot(dat_x(spike_selected),dat_y(spike_selected),'ro','markerSize',10); | ||
title(sprintf('current cluster %d, projection %d, %d spikes in cluster',cluster_selected,use_projection,sum(spikes.cluster==cluster_selected))); | ||
|
||
[x,y,b]=ginput(1); | ||
|
||
if b>47 & b <58 % number keys, cluster select | ||
cluster_selected=b-48; | ||
end; | ||
|
||
if b==30; use_projection=mod(use_projection,6)+1; end; % up/down: cycle trough projections | ||
if b==31; use_projection=mod(use_projection-2,6)+1; end; % up/down: cycle trough projections | ||
if b==27; disp('exited'); run=0; end; % esc: exit | ||
|
||
if b==43 | b==42; % +, add to cluster | ||
t= imfreehand(ax,'Closed' ,1); | ||
t.setClosed(1); | ||
r=t.getPosition; | ||
px=r(:,1);py=r(:,2); | ||
in = inpolygon(dat_x,dat_y,px,py); | ||
if b==43 % +, add | ||
spikes.cluster(in)=cluster_selected; | ||
else % *. intersect cluster (move all non selected to null cluster) | ||
spikes.cluster(~in & spikes.cluster==cluster_selected)=1; | ||
end; | ||
end; | ||
|
||
if b==1 % left click - select individual waveform to plot | ||
[~,spike_selected]=min((dat_x-x).^2 +(dat_y-y).^2); | ||
end; | ||
|
||
end; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters