Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add compose example for DocSum amd rocm deployment #1125

176 changes: 176 additions & 0 deletions DocSum/docker_compose/amd/gpu/rocm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
###### Copyright (C) 2024 Advanced Micro Devices, Inc.

# Build and deploy DocSum Application on AMD GPU (ROCm)

## Build images

## 🚀 Build Docker Images

First of all, you need to build Docker Images locally and install the python package of it.

### 1. Build LLM Image

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile .
```

Then run the command `docker images`, you will have the following four Docker Images:

### 2. Build MegaService Docker Image

To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `docsum.py` Python script. Build the MegaService Docker image via below command:

```bash
git clone https://github.com/opea-project/GenAIExamples
cd GenAIExamples/DocSum/
docker build -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```

### 3. Build UI Docker Image

Build the frontend Docker image via below command:

```bash
cd GenAIExamples/DocSum/ui
docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
```

Then run the command `docker images`, you will have the following Docker Images:

1. `opea/llm-docsum-tgi:latest`
2. `opea/docsum:latest`
3. `opea/docsum-ui:latest`

### 4. Build React UI Docker Image

Build the frontend Docker image via below command:

```bash
cd GenAIExamples/DocSum/ui
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum"
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .

docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
```

Then run the command `docker images`, you will have the following Docker Images:

1. `opea/llm-docsum-tgi:latest`
2. `opea/docsum:latest`
3. `opea/docsum-ui:latest`
4. `opea/docsum-react-ui:latest`

## 🚀 Start Microservices and MegaService
chensuyue marked this conversation as resolved.
Show resolved Hide resolved

### Required Models

Default model is "Intel/neural-chat-7b-v3-3". Change "LLM_MODEL_ID" in environment variables below if you want to use another model.
For gated models, you also need to provide [HuggingFace token](https://huggingface.co/docs/hub/security-tokens) in "HUGGINGFACEHUB_API_TOKEN" environment variable.

### Setup Environment Variables

Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.

```bash
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${host_ip}
export DOCSUM_TGI_SERVICE_PORT="18882"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export DOCSUM_LLM_SERVER_PORT="8008"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5173"
```

Note: Please replace with `host_ip` with your external IP address, do not use localhost.

Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

Example for set isolation for 1 GPU

```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
```

Example for set isolation for 2 GPUs

```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
- /dev/dri/card1:/dev/dri/card1
- /dev/dri/renderD129:/dev/dri/renderD129
```

Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

### Start Microservice Docker Containers

```bash
cd GenAIExamples/DocSum/docker_compose/amd/gpu/rocm
docker compose up -d
```

### Validate Microservices

1. TGI Service

```bash
curl http://${host_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
-H 'Content-Type: application/json'
```

2. LLM Microservice

```bash
curl http://${host_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
-H 'Content-Type: application/json'
```

3. MegaService

```bash
curl http://${host_ip}:8888/v1/docsum -H "Content-Type: application/json" -d '{
"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32, "language":"en", "stream":false
}'
```

## 🚀 Launch the Svelte UI

Open this URL `http://{host_ip}:5173` in your browser to access the frontend.

![project-screenshot](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/93b1ed4b-4b76-4875-927e-cc7818b4825b)

Here is an example for summarizing a article.

![image](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/67ecb2ec-408d-4e81-b124-6ded6b833f55)

## 🚀 Launch the React UI (Optional)

To access the React-based frontend, modify the UI service in the `compose.yaml` file. Replace `docsum-rocm-ui-server` service with the `docsum-rocm-react-ui-server` service as per the config below:

```yaml
docsum-rocm-react-ui-server:
image: ${REGISTRY:-opea}/docsum-react-ui:${TAG:-latest}
container_name: docsum-rocm-react-ui-server
depends_on:
- docsum-rocm-backend-server
ports:
- "5174:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
```

Open this URL `http://{host_ip}:5175` in your browser to access the frontend.

![project-screenshot](../../../../assets/img/docsum-ui-react.png)
89 changes: 89 additions & 0 deletions DocSum/docker_compose/amd/gpu/rocm/compose.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0

services:
docsum-tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
container_name: docsum-tgi-service
ports:
- "${DOCSUM_TGI_SERVICE_PORT}:80"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
volumes:
- "/var/opea/docsum-service/data:/data"
shm_size: 1g
devices:
- /dev/kfd:/dev/kfd
- /dev/dri/${DOCSUM_CARD_ID}:/dev/dri/${DOCSUM_CARD_ID}
- /dev/dri/${DOCSUM_RENDER_ID}:/dev/dri/${DOCSUM_RENDER_ID}
cap_add:
- SYS_PTRACE
group_add:
- video
security_opt:
- seccomp:unconfined
ipc: host
command: --model-id ${DOCSUM_LLM_MODEL_ID}
docsum-llm-server:
image: ${REGISTRY:-opea}/llm-docsum-tgi:${TAG:-latest}
container_name: docsum-llm-server
depends_on:
- docsum-tgi-service
ports:
- "${DOCSUM_LLM_SERVER_PORT}:9000"
ipc: host
group_add:
- video
security_opt:
- seccomp:unconfined
cap_add:
- SYS_PTRACE
devices:
- /dev/kfd:/dev/kfd
- /dev/dri/${DOCSUM_CARD_ID}:/dev/dri/${DOCSUM_CARD_ID}
- /dev/dri/${DOCSUM_RENDER_ID}:/dev/dri/${DOCSUM_RENDER_ID}
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
docsum-backend-server:
image: ${REGISTRY:-opea}/docsum:${TAG:-latest}
container_name: docsum-backend-server
depends_on:
- docsum-tgi-service
- docsum-llm-server
ports:
- "${DOCSUM_BACKEND_SERVER_PORT}:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${HOST_IP}
- LLM_SERVICE_HOST_IP=${HOST_IP}
ipc: host
restart: always
docsum-ui-server:
image: ${REGISTRY:-opea}/docsum-ui:${TAG:-latest}
container_name: docsum-ui-server
depends_on:
- docsum-backend-server
ports:
- "${DOCSUM_FRONTEND_PORT}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL="http://${HOST_IP}:${DOCSUM_BACKEND_SERVER_PORT}/v1/docsum"
ipc: host
restart: always

networks:
default:
driver: bridge
15 changes: 15 additions & 0 deletions DocSum/docker_compose/amd/gpu/rocm/set_env.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
#!/usr/bin/env bash

# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0

export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${host_ip}
export DOCSUM_TGI_SERVICE_PORT="8008"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export DOCSUM_LLM_SERVER_PORT="9000"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5173"
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:${DOCSUM_BACKEND_SERVER_PORT}/v1/docsum"
Loading
Loading