Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix biasScaleShape of GroupNormalizationV21 to support ranks > 4 #3030

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/Dialect/ONNX/Transforms/Decompose.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1018,7 +1018,8 @@ LogicalResult ONNXGroupNormalizationCommon(

// Calculate the (possible) dynamic dimensions for biasScaleShape
Value NGShape = create.onnx.constantInt64({numGroups});
Value oneDimShape = create.onnx.constantInt64({1, 1});
Value oneDimShape =
create.onnx.constantInt64(SmallVector<int64_t>(spacialRank, 1));
Type biasScaleShapeType =
RankedTensorType::get({inputRank}, rewriter.getI64Type());
Value biasScaleShape = create.onnx.concat(
Expand Down
28 changes: 14 additions & 14 deletions test/mlir/onnx/onnx_decompose.mlir
jorickert marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -565,24 +565,24 @@ func.func @test_groupnorm_v18(%arg0: tensor<3x4x2x2xf32>, %arg1: tensor<2xf32>,
}
// -----

func.func @test_groupnorm_v21(%arg0: tensor<3x4x2x2xf32>, %arg1: tensor<2xf32>, %arg2: tensor<2xf32>) -> tensor<3x4x2x2xf32> {
%0 = "onnx.GroupNormalization"(%arg0, %arg1, %arg2) {epsilon = 0.00999999977 : f32, num_groups = 2 : si64} : (tensor<3x4x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<3x4x2x2xf32>
func.func @test_groupnorm_v21(%arg0: tensor<3x4x2x2xf32>, %arg1: tensor<4xf32>, %arg2: tensor<4xf32>) -> tensor<3x4x2x2xf32> {
%0 = "onnx.GroupNormalization"(%arg0, %arg1, %arg2) {epsilon = 0.00999999977 : f32, num_groups = 2 : si64} : (tensor<3x4x2x2xf32>, tensor<4xf32>, tensor<4xf32>) -> tensor<3x4x2x2xf32>
onnx.Return %0 : tensor<3x4x2x2xf32>
// mlir2FileCheck.py
// CHECK-LABEL: func.func @test_groupnorm_v21
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<3x4x2x2xf32>, [[PARAM_1_:%.+]]: tensor<2xf32>, [[PARAM_2_:%.+]]: tensor<2xf32>) -> tensor<3x4x2x2xf32> {
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<3x4x2x2xf32>, [[PARAM_1_:%.+]]: tensor<4xf32>, [[PARAM_2_:%.+]]: tensor<4xf32>) -> tensor<3x4x2x2xf32> {
// CHECK-DAG: [[VAR_0_:%.+]] = onnx.Constant dense<2> : tensor<1xi64>
// CHECK-DAG: [[VAR_1_:%.+]] = onnx.Constant dense<1> : tensor<2xi64>
// CHECK: [[VAR_2_:%.+]] = "onnx.Concat"([[VAR_0_]], [[VAR_0_]], [[VAR_1_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>, tensor<2xi64>) -> tensor<4xi64>
// CHECK-DAG: [[VAR_3_:%.+]] = "onnx.Reshape"([[PARAM_1_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<2xf32>, tensor<4xi64>) -> tensor<2x2x1x1xf32>
// CHECK-DAG: [[VAR_4_:%.+]] = "onnx.Reshape"([[PARAM_2_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<2xf32>, tensor<4xi64>) -> tensor<2x2x1x1xf32>
// CHECK-DAG: [[VAR_3_:%.+]] = "onnx.Reshape"([[PARAM_1_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<4xf32>, tensor<4xi64>) -> tensor<2x2x1x1xf32>
// CHECK-DAG: [[VAR_4_:%.+]] = "onnx.Reshape"([[PARAM_2_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<4xf32>, tensor<4xi64>) -> tensor<2x2x1x1xf32>
// CHECK-DAG: [[VAR_5_:%.+]] = "onnx.Shape"([[PARAM_0_]]) {end = 1 : si64, start = 0 : si64} : (tensor<3x4x2x2xf32>) -> tensor<1xi64>
// CHECK-DAG: [[VAR_6_:%.+]] = onnx.Constant dense<[2, -1]> : tensor<2xi64>
// CHECK-DAG: [[VAR_7_:%.+]] = "onnx.Shape"([[PARAM_0_]]) {start = 2 : si64} : (tensor<3x4x2x2xf32>) -> tensor<2xi64>
// CHECK: [[VAR_8_:%.+]] = "onnx.Concat"([[VAR_5_]], [[VAR_6_]], [[VAR_7_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<2xi64>, tensor<2xi64>) -> tensor<5xi64>
// CHECK-DAG: [[VAR_9_:%.+]] = "onnx.Reshape"([[PARAM_0_]], [[VAR_8_]]) {allowzero = 0 : si64} : (tensor<3x4x2x2xf32>, tensor<5xi64>) -> tensor<3x2x2x2x2xf32>
// CHECK-DAG: [[VAR_10_:%.+]] = "onnx.NoValue"() {value} : () -> none
// CHECK: [[Y_]], [[Mean_]], [[VAR_InvStdDev_:%.+]] = "onnx.LayerNormalization"([[VAR_9_]], [[VAR_3_]], [[VAR_4_]]) {axis = 2 : si64, epsilon = 0.00999999977 : f32, stash_type = 1 : si64} : (tensor<3x2x2x2x2xf32>, tensor<2x2x1x1xf32>, tensor<2x2x1x1xf32>) -> (tensor<3x2x2x2x2xf32>, none, none)
// CHECK: [[Y_:%.+]], [[Mean_:%.+]], [[VAR_InvStdDev_:%.+]] = "onnx.LayerNormalization"([[VAR_9_]], [[VAR_3_]], [[VAR_4_]]) {axis = 2 : si64, epsilon = 0.00999999977 : f32, stash_type = 1 : si64} : (tensor<3x2x2x2x2xf32>, tensor<2x2x1x1xf32>, tensor<2x2x1x1xf32>) -> (tensor<3x2x2x2x2xf32>, none, none)
// CHECK: [[VAR_11_:%.+]] = "onnx.Shape"([[PARAM_0_]]) {start = 0 : si64} : (tensor<3x4x2x2xf32>) -> tensor<4xi64>
// CHECK: [[VAR_12_:%.+]] = "onnx.Reshape"([[Y_]], [[VAR_11_]]) {allowzero = 0 : si64} : (tensor<3x2x2x2x2xf32>, tensor<4xi64>) -> tensor<3x4x2x2xf32>
// CHECK: onnx.Return [[VAR_12_]] : tensor<3x4x2x2xf32>
Expand Down Expand Up @@ -614,24 +614,24 @@ func.func @group_norm5d_v18(%arg0: tensor<3x4x6x8x16xf32>, %arg1: tensor<2xf32>,

// -----

func.func @group_norm5d_v21(%arg0: tensor<3x4x6x8x16xf32>, %arg1: tensor<2xf32>, %arg2: tensor<2xf32>) -> tensor<3x4x6x8x16xf32> {
%0 = "onnx.GroupNormalization"(%arg0, %arg1, %arg2) {epsilon = 0.00999999977 : f32, num_groups = 2 : si64} : (tensor<3x4x6x8x16xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<3x4x6x8x16xf32>
func.func @group_norm5d_v21(%arg0: tensor<3x4x6x8x16xf32>, %arg1: tensor<4xf32>, %arg2: tensor<4xf32>) -> tensor<3x4x6x8x16xf32> {
%0 = "onnx.GroupNormalization"(%arg0, %arg1, %arg2) {epsilon = 0.00999999977 : f32, num_groups = 2 : si64} : (tensor<3x4x6x8x16xf32>, tensor<4xf32>, tensor<4xf32>) -> tensor<3x4x6x8x16xf32>
onnx.Return %0 : tensor<3x4x6x8x16xf32>
// mlir2FileCheck.py
// CHECK-LABEL: func.func @group_norm5d_v21
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<3x4x6x8x16xf32>, [[PARAM_1_:%.+]]: tensor<2xf32>, [[PARAM_2_:%.+]]: tensor<2xf32>) -> tensor<3x4x6x8x16xf32> {
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<3x4x6x8x16xf32>, [[PARAM_1_:%.+]]: tensor<4xf32>, [[PARAM_2_:%.+]]: tensor<4xf32>) -> tensor<3x4x6x8x16xf32> {
// CHECK-DAG: [[VAR_0_:%.+]] = onnx.Constant dense<2> : tensor<1xi64>
// CHECK-DAG: [[VAR_1_:%.+]] = onnx.Constant dense<1> : tensor<2xi64>
// CHECK: [[VAR_2_:%.+]] = "onnx.Concat"([[VAR_0_]], [[VAR_0_]], [[VAR_1_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>, tensor<2xi64>) -> tensor<5xi64>
// CHECK-DAG: [[VAR_3_:%.+]] = "onnx.Reshape"([[PARAM_1_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<2xf32>, tensor<5xi64>) -> tensor<2x2x1x1x1xf32>
// CHECK-DAG: [[VAR_4_:%.+]] = "onnx.Reshape"([[PARAM_2_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<2xf32>, tensor<5xi64>) -> tensor<2x2x1x1x1xf32>
// CHECK-DAG: [[VAR_1_:%.+]] = onnx.Constant dense<1> : tensor<3xi64>
// CHECK: [[VAR_2_:%.+]] = "onnx.Concat"([[VAR_0_]], [[VAR_0_]], [[VAR_1_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>, tensor<3xi64>) -> tensor<5xi64>
// CHECK-DAG: [[VAR_3_:%.+]] = "onnx.Reshape"([[PARAM_1_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<4xf32>, tensor<5xi64>) -> tensor<2x2x1x1x1xf32>
// CHECK-DAG: [[VAR_4_:%.+]] = "onnx.Reshape"([[PARAM_2_]], [[VAR_2_]]) {allowzero = 0 : si64} : (tensor<4xf32>, tensor<5xi64>) -> tensor<2x2x1x1x1xf32>
// CHECK-DAG: [[VAR_5_:%.+]] = "onnx.Shape"([[PARAM_0_]]) {end = 1 : si64, start = 0 : si64} : (tensor<3x4x6x8x16xf32>) -> tensor<1xi64>
// CHECK-DAG: [[VAR_6_:%.+]] = onnx.Constant dense<[2, -1]> : tensor<2xi64>
// CHECK-DAG: [[VAR_7_:%.+]] = "onnx.Shape"([[PARAM_0_]]) {start = 2 : si64} : (tensor<3x4x6x8x16xf32>) -> tensor<3xi64>
// CHECK: [[VAR_8_:%.+]] = "onnx.Concat"([[VAR_5_]], [[VAR_6_]], [[VAR_7_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<2xi64>, tensor<3xi64>) -> tensor<6xi64>
// CHECK-DAG: [[VAR_9_:%.+]] = "onnx.Reshape"([[PARAM_0_]], [[VAR_8_]]) {allowzero = 0 : si64} : (tensor<3x4x6x8x16xf32>, tensor<6xi64>) -> tensor<3x2x2x6x8x16xf32>
// CHECK-DAG: [[VAR_10_:%.+]] = "onnx.NoValue"() {value} : () -> none
// CHECK: [[Y_]], [[Mean_]], [[VAR_InvStdDev_:%.+]] = "onnx.LayerNormalization"([[VAR_9_]], [[VAR_3_]], [[VAR_4_]]) {axis = 2 : si64, epsilon = 0.00999999977 : f32, stash_type = 1 : si64} : (tensor<3x2x2x6x8x16xf32>, tensor<2x2x1x1x1xf32>, tensor<2x2x1x1x1xf32>) -> (tensor<3x2x2x6x8x16xf32>, none, none)
// CHECK: [[Y_:%.+]], [[Mean_:%.+]], [[VAR_InvStdDev_:%.+]] = "onnx.LayerNormalization"([[VAR_9_]], [[VAR_3_]], [[VAR_4_]]) {axis = 2 : si64, epsilon = 0.00999999977 : f32, stash_type = 1 : si64} : (tensor<3x2x2x6x8x16xf32>, tensor<2x2x1x1x1xf32>, tensor<2x2x1x1x1xf32>) -> (tensor<3x2x2x6x8x16xf32>, none, none)
// CHECK: [[VAR_11_:%.+]] = "onnx.Shape"([[PARAM_0_]]) {start = 0 : si64} : (tensor<3x4x6x8x16xf32>) -> tensor<5xi64>
// CHECK: [[VAR_12_:%.+]] = "onnx.Reshape"([[Y_]], [[VAR_11_]]) {allowzero = 0 : si64} : (tensor<3x2x2x6x8x16xf32>, tensor<5xi64>) -> tensor<3x4x6x8x16xf32>
// CHECK: onnx.Return [[VAR_12_]] : tensor<3x4x6x8x16xf32>
Expand Down
Loading