Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Definition and shape inference for ONNXParallelOp and ONNXForkOp #2810

Draft
wants to merge 5 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 105 additions & 0 deletions src/Dialect/ONNX/AdditionalONNXOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -620,3 +620,108 @@ def ONNXRMSLayerNormalizationOp:ONNX_Op<"RMSLayerNormalization",
}];
let hasVerifier = 1;
}

//===----------------------------------------------------------------------===//
// ONNXForkOp
def ONNXForkOp:ONNX_Op<"Fork",
[Pure, HasParent<"ONNXParallelOp">,
DeclareOpInterfaceMethods<ShapeInferenceOpInterface>,
DeclareOpInterfaceMethods<ShapeHelperOpInterface>,
DeclareOpInterfaceMethods<ResultTypeInferenceOpInterface>,
OpInterface<"mlir::HasOnnxSubgraphOpInterface">]> {
let summary = "ONNX operation for creating a thread";
let description = [{
Create a thread to run the operations included in the `body` region.
This operation need to be in the `body` region of ONNXParallelOp.
The thread is synchronized with main thread at the end of the
ONNXParallelOp. The results to be used in following operations need
to be set as the results of this operation by using ONNXYieldOp.
In the following example, MatMul ops runs in parallel with two threads.

Example:
```mlir
%0:2 = "onnx.Parallel"() ({
%00 = "onnx.Fork"() ({
%01 = "onnx.MatMul"(%arg0, %c0) : (tensor<64x32xf32>, tensor<32x32xf32>) -> tensor<64x32xf32>
onnx.Yield %01 : tensor<64x32xf32>
}) {id = 0 : si64} : () -> tensor<64x32xf32>
%01 = "onnx.Fork"() ({
%01 = "onnx.MatMul"(%arg0, %c2) : (tensor<64x32xf32>, tensor<32x32xf32>) -> tensor<64x32xf32>
onnx.Yield %01 : tensor<64x32xf32>
}) {id = 1 : si64} : () -> tensor<64x32xf32>
"onnx.Yield"(%00, %01) : (tensor<*xf32>, tensor<64x32xf32>) -> ()
}) : () -> (tensor<64x32xf32>, tensor<64x32xf32>)
```
}];
let arguments = (ins DefaultValuedAttr<SI64Attr, "0">:$id);
let results = (outs Variadic<AnyTypeOf<[TensorOf<[F16]>, TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[UI32]>,
TensorOf<[UI64]>, TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[BF16]>]>>:$results);
let regions = (region SizedRegion<1>:$body);
let skipDefaultBuilders = 1;
let extraClassDeclaration = [{
int64_t getSubgraphRegionIdx(const std::string& name) {
if (name == "body") return 0;
llvm_unreachable("region with the specified name does not exist");
}
using BodyBuilderFn =
llvm::function_ref<void(mlir::OpBuilder &, mlir::Location, mlir::ValueRange)>;
}];
let extraClassDefinition = [{
onnx_mlir::ONNXOpShapeHelper * ONNXForkOp::getShapeHelper(mlir::Operation *op, mlir::ArrayRef<mlir::Value> oper,
onnx_mlir::IndexExprBuilder *ieb, onnx_mlir::IndexExprScope *scope) {
onnx_mlir::ONNXOpShapeHelper *sh = new ONNXForkOpShapeHelper(op, oper, ieb, scope);
assert(sh && "failed to allocate shape helper");
return sh;
}
}];
let builders = [
OpBuilder<(ins "mlir::TypeRange":$resultTypes,
"mlir::ValueRange":$operands,
CArg<"llvm::function_ref<void(mlir::OpBuilder &, mlir::Location, mlir::ValueRange)>",
"nullptr">:$bodyBuilder)>
];
}

//===----------------------------------------------------------------------===//
// ONNXParallelOp
def ONNXParallelOp:ONNX_Op<"Parallel",
[Pure, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>,
DeclareOpInterfaceMethods<ShapeHelperOpInterface>,
DeclareOpInterfaceMethods<ResultTypeInferenceOpInterface>,
OpInterface<"mlir::HasOnnxSubgraphOpInterface">]> {
let summary = "ONNX operation to specify paralell region.";
let description = [{
Specify parallel region. ONNXForkOps are included in the `body` region.
The threads created by ONNXForkOp are synchronized with main thread
at the end of this operation. The results to be used in following
operations need to be set as the results of this operation by using
ONNXYieldOp.
}];
let results = (outs Variadic<AnyTypeOf<[TensorOf<[F16]>, TensorOf<[F32]>, TensorOf<[F64]>, TensorOf<[UI32]>,
TensorOf<[UI64]>, TensorOf<[I32]>, TensorOf<[I64]>, TensorOf<[BF16]>]>>:$results);
let regions = (region SizedRegion<1>:$body);

let skipDefaultBuilders = 1;
let extraClassDeclaration = [{
int64_t getSubgraphRegionIdx(const std::string& name) {
if (name == "body") return 0;
llvm_unreachable("region with the specified name does not exist");
}
using BodyBuilderFn =
llvm::function_ref<void(mlir::OpBuilder &, mlir::Location, mlir::ValueRange)>;
}];
let extraClassDefinition = [{
onnx_mlir::ONNXOpShapeHelper * ONNXParallelOp::getShapeHelper(mlir::Operation *op, mlir::ArrayRef<mlir::Value> oper,
onnx_mlir::IndexExprBuilder *ieb, onnx_mlir::IndexExprScope *scope) {
onnx_mlir::ONNXOpShapeHelper *sh = new ONNXParallelOpShapeHelper(op, oper, ieb, scope);
assert(sh && "failed to allocate shape helper");
return sh;
}
}];
let builders = [
OpBuilder<(ins "mlir::TypeRange":$resultTypes,
"mlir::ValueRange":$operands,
CArg<"llvm::function_ref<void(mlir::OpBuilder &, mlir::Location, mlir::ValueRange)>",
"nullptr">:$bodyBuilder)>
];
}
2 changes: 2 additions & 0 deletions src/Dialect/ONNX/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,11 @@ add_onnx_mlir_library(OMONNXOps
ONNXOps/Additional/Custom.cpp
ONNXOps/Additional/Dim.cpp
ONNXOps/Additional/EntryPoint.cpp
ONNXOps/Additional/Fork.cpp
ONNXOps/Additional/Return.cpp
ONNXOps/Additional/LayoutTransform.cpp
ONNXOps/Additional/None.cpp
ONNXOps/Additional/Parallel.cpp
ONNXOps/Additional/ShapeTransform.cpp
ONNXOps/ControlFlow/If.cpp
ONNXOps/ControlFlow/Loop.cpp
Expand Down
95 changes: 95 additions & 0 deletions src/Dialect/ONNX/ONNXOps/Additional/Fork.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
/*
* SPDX-License-Identifier: Apache-2.0
*/

//===---------------- Fork.cpp - ONNX Operations -------------------------===//
//
// Copyright 2019-2024 The IBM Research Authors.
//
// =============================================================================
//
// This file provides definition of ONNX dialect Fork operation.
//
//===----------------------------------------------------------------------===//

#include "src/Dialect/ONNX/ONNXOps/OpHelper.hpp"

using namespace mlir;
using namespace onnx_mlir;

//===----------------------------------------------------------------------===//
// ShapeHelper
//===----------------------------------------------------------------------===//

template <>
LogicalResult ONNXForkOpShapeHelper::computeShape() {
ONNXForkOp forkOp = llvm::cast<ONNXForkOp>(op);
(void)forkOp.inferShapes([](Region &region) {});
Operation *yieldOp = forkOp.getBody().front().getTerminator();
for (unsigned i = 0; i < yieldOp->getNumOperands(); ++i) {
DimsExpr outputDims;
Value returnVal = yieldOp->getOperands()[i];
int64_t outRank = returnVal.getType().cast<ShapedType>().getRank();
for (int64_t j = 0; j < outRank; ++j)
outputDims.emplace_back(createIE->getShapeAsDim(returnVal, j));
setOutputDims(outputDims, i);
}
return success();
}

//===----------------------------------------------------------------------===//
// Type Inference
//===----------------------------------------------------------------------===//

std::vector<Type> ONNXForkOp::resultTypeInference() {
Operation *terminator = getRegion().back().getTerminator();
auto bodyOutputTys = terminator->getOperandTypes();
std::vector<Type> resultTypes;
for (auto [i, ty] : llvm::enumerate(bodyOutputTys)) {
resultTypes.push_back(ty);
}
return resultTypes;
}

//===----------------------------------------------------------------------===//
// Shape Inference
//===----------------------------------------------------------------------===//

LogicalResult ONNXForkOp::inferShapes(
std::function<void(Region &)> doShapeInference) {
doShapeInference(getRegion());
for (auto [i, ty] : llvm::enumerate(resultTypeInference()))
getResult(i).setType(ty);
return success();
}

//===----------------------------------------------------------------------===//
// Builder: Refer to Async ExecuteOp
//===----------------------------------------------------------------------===//
void ONNXForkOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, ValueRange operands, BodyBuilderFn bodyBuilder) {

result.addOperands(operands);
result.addTypes(resultTypes);

// Add a body region with block arguments
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
for (Value operand : operands) {
bodyBlock.addArgument(operand.getType(), operand.getLoc());
}

// Create the default terminator if the builder is not provided and if the
// expected result is empty. Otherwise, leave this to the caller
// because we don't know which values to return from the execute op.
if (resultTypes.empty() && !bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
builder.create<ONNXYieldOp>(result.location, ValueRange());
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArguments());
}
}
96 changes: 96 additions & 0 deletions src/Dialect/ONNX/ONNXOps/Additional/Parallel.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
/*
* SPDX-License-Identifier: Apache-2.0
*/

//===---------------- Fork.cpp - ONNX Operations -------------------------===//
//
// Copyright 2019-2024 The IBM Research Authors.
//
// =============================================================================
//
// This file provides definition of ONNX dialect Fork operation.
//
//===----------------------------------------------------------------------===//

#include "src/Dialect/ONNX/ONNXOps/OpHelper.hpp"

using namespace mlir;
using namespace onnx_mlir;

//===----------------------------------------------------------------------===//
// ShapeHelper
//===----------------------------------------------------------------------===//

template <>
LogicalResult ONNXParallelOpShapeHelper::computeShape() {
ONNXParallelOp parallelOp = llvm::cast<ONNXParallelOp>(op);
(void)parallelOp.inferShapes([](Region &region) {});
Operation *yieldOp = parallelOp.getBody().front().getTerminator();
for (unsigned i = 0; i < yieldOp->getNumOperands(); ++i) {
DimsExpr outputDims;
Value returnVal = yieldOp->getOperands()[i];
int64_t outRank = returnVal.getType().cast<ShapedType>().getRank();
for (int64_t j = 0; j < outRank; ++j)
outputDims.emplace_back(createIE->getShapeAsDim(returnVal, j));
setOutputDims(outputDims, i);
}
return success();
}

//===----------------------------------------------------------------------===//
// Type Inference
//===----------------------------------------------------------------------===//

std::vector<Type> ONNXParallelOp::resultTypeInference() {
Operation *terminator = getRegion().back().getTerminator();
auto bodyOutputTys = terminator->getOperandTypes();

std::vector<Type> resultTypes;
for (auto [i, ty] : llvm::enumerate(bodyOutputTys)) {
resultTypes.push_back(ty);
}
return resultTypes;
}

//===----------------------------------------------------------------------===//
// Shape Inference
//===----------------------------------------------------------------------===//

LogicalResult ONNXParallelOp::inferShapes(
std::function<void(Region &)> doShapeInference) {
doShapeInference(getRegion());
for (auto [i, ty] : llvm::enumerate(resultTypeInference()))
getResult(i).setType(ty);
return success();
}

//===----------------------------------------------------------------------===//
// Builder: Refer to Async ExecuteOp
//===----------------------------------------------------------------------===//
void ONNXParallelOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, ValueRange operands, BodyBuilderFn bodyBuilder) {

result.addOperands(operands);
result.addTypes(resultTypes);

// Add a body region with block arguments
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
for (Value operand : operands) {
bodyBlock.addArgument(operand.getType(), operand.getLoc());
}

// Create the default terminator if the builder is not provided and if the
// expected result is empty. Otherwise, leave this to the caller
// because we don't know which values to return from the execute op.
if (resultTypes.empty() && !bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
builder.create<ONNXYieldOp>(result.location, ValueRange());
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArguments());
}
}
2 changes: 2 additions & 0 deletions src/Dialect/ONNX/ONNXOps/ShapeHelper.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -885,6 +885,8 @@ using ONNXTileOpShapeHelper = ONNXNonSpecificOpShapeHelper<mlir::ONNXTileOp>;
using ONNXTopKOpShapeHelper = ONNXNonSpecificOpShapeHelper<mlir::ONNXTopKOp>;
using ONNXTransposeOpShapeHelper = ONNXNonSpecificOpShapeHelper<mlir::ONNXTransposeOp>;
using ONNXUpsampleOpShapeHelper = ONNXNonSpecificOpShapeHelper<mlir::ONNXUpsampleOp>;
using ONNXForkOpShapeHelper = ONNXNonSpecificOpShapeHelper<mlir::ONNXForkOp>;
using ONNXParallelOpShapeHelper = ONNXNonSpecificOpShapeHelper<mlir::ONNXParallelOp>;
// clang-format on

//===----------------------------------------------------------------------===//
Expand Down
44 changes: 44 additions & 0 deletions test/mlir/onnx/onnx_shape_inference.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -3801,3 +3801,47 @@ func.func @test_RMSlayer_norm_2inputs(%arg0: tensor<12x3x5xf32>, %arg1: tensor<5
// CHECK: }
}

// -----

//===----------------------------------------------------------------------===//
/// Test shape inference for Parallel and Fork.
//===----------------------------------------------------------------------===//

func.func @test_parallel_fork_1(%arg0: tensor<8x64x32xf32>, %arg1: tensor<32x32xf32>) -> (tensor<*xf32>, tensor<*xf32>) {
%c0 = onnx.Constant dense<1.0> : tensor<32x32xf32>
%c1 = onnx.Constant dense<1.0> : tensor<32xf32>
%c2 = onnx.Constant dense<1.0> : tensor<32x32xf32>

%0:2 = "onnx.Parallel"() ({
%00 = "onnx.Fork"() ({
%01 = "onnx.MatMul"(%arg0, %c0) : (tensor<8x64x32xf32>, tensor<32x32xf32>) -> tensor<*xf32>
onnx.Yield %01 : tensor<*xf32>
}) {id = 0 : si64} : () -> tensor<*xf32>
%01 = "onnx.Fork"() ({
%01 = "onnx.MatMul"(%arg0, %c2) : (tensor<8x64x32xf32>, tensor<32x32xf32>) -> tensor<*xf32>
onnx.Yield %01 : tensor<*xf32>
}) {id = 1 : si64} : () -> tensor<*xf32>
"onnx.Yield"(%00, %01) : (tensor<*xf32>, tensor<*xf32>) -> ()
}) : () -> (tensor<*xf32>, tensor<*xf32>)
"onnx.Return"(%0#0,%0#1): (tensor<*xf32>, tensor<*xf32>) -> ()

// CHECK-LABEL: func.func @test_parallel_fork_1
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<8x64x32xf32>, [[PARAM_1_:%.+]]: tensor<32x32xf32>) -> (tensor<8x64x32xf32>, tensor<8x64x32xf32>) {
// CHECK-DAG: [[VAR_0_:%.+]] = onnx.Constant dense<1.000000e+00> : tensor<32x32xf32>
// CHECK-DAG: [[VAR_1_:%.+]]:2 = "onnx.Parallel"() ({
// CHECK-DAG: [[VAR_2_:%.+]] = "onnx.Fork"() ({
// CHECK: [[VAR_4_:%.+]] = "onnx.MatMul"([[PARAM_0_]], [[VAR_0_]]) : (tensor<8x64x32xf32>, tensor<32x32xf32>) -> tensor<8x64x32xf32>
// CHECK: onnx.Yield [[VAR_4_]] : tensor<8x64x32xf32>
// CHECK: }) {id = 0 : si64} : () -> tensor<8x64x32xf32>
// CHECK-DAG: [[VAR_3_:%.+]] = "onnx.Fork"() ({
// CHECK-DAG: [[VAR_4_1_:%.+]] = "onnx.MatMul"([[PARAM_0_]], [[VAR_0_]]) : (tensor<8x64x32xf32>, tensor<32x32xf32>) -> tensor<8x64x32xf32>
// CHECK: onnx.Yield [[VAR_4_1_]] : tensor<8x64x32xf32>
// CHECK: }) {id = 1 : si64} : () -> tensor<8x64x32xf32>
// CHECK: onnx.Yield [[VAR_2_]], [[VAR_3_]] : tensor<8x64x32xf32>, tensor<8x64x32xf32>
// CHECK: }) : () -> (tensor<8x64x32xf32>, tensor<8x64x32xf32>)
// CHECK: onnx.Return [[VAR_1_]]#0, [[VAR_1_]]#1 : tensor<8x64x32xf32>, tensor<8x64x32xf32>
// CHECK: }
}

// -----

Loading