-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
252 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# Copyright 2022 NVIDIA Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import math | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
import cunumeric as num | ||
|
||
DTYPES = ( | ||
np.uint32, | ||
np.uint64, | ||
np.float32, | ||
np.float64, | ||
) | ||
|
||
SHAPES = ( | ||
(10,), | ||
(2, 5), | ||
(3, 7, 10), | ||
) | ||
|
||
|
||
class TestDigitizeErrors(object): | ||
def test_complex_array(self): | ||
a = np.array([2, 3, 10, 9], dtype=np.complex64) | ||
bins = [0, 3, 5] | ||
expected_exc = TypeError | ||
with pytest.raises(expected_exc): | ||
num.digitize(a, bins) | ||
with pytest.raises(expected_exc): | ||
np.digitize(a, bins) | ||
|
||
@pytest.mark.xfail | ||
def test_bad_array(self): | ||
bins = [0, 5, 3] | ||
expected_exc = ValueError | ||
with pytest.raises(expected_exc): | ||
# cunumeric raises TypeError | ||
num.digitize(None, bins) | ||
with pytest.raises(expected_exc): | ||
np.digitize(None, bins) | ||
|
||
@pytest.mark.xfail | ||
def test_bad_bins(self): | ||
a = [2, 3, 10, 9] | ||
expected_exc = ValueError | ||
with pytest.raises(expected_exc): | ||
# cunumeric raises TypeError | ||
num.digitize(a, None) | ||
with pytest.raises(expected_exc): | ||
np.digitize(a, None) | ||
|
||
def test_bins_non_monotonic(self): | ||
a = [2, 3, 10, 9] | ||
bins = [0, 5, 3] | ||
expected_exc = ValueError | ||
with pytest.raises(expected_exc): | ||
num.digitize(a, bins) | ||
with pytest.raises(expected_exc): | ||
np.digitize(a, bins) | ||
|
||
|
||
def generate_random(shape, dtype): | ||
a_np = None | ||
size = math.prod(shape) | ||
if np.issubdtype(dtype, np.integer): | ||
a_np = np.array( | ||
np.random.randint( | ||
np.iinfo(dtype).min, | ||
np.iinfo(dtype).max, | ||
size=size, | ||
dtype=dtype, | ||
), | ||
dtype=dtype, | ||
) | ||
elif np.issubdtype(dtype, np.floating): | ||
a_np = np.array(np.random.random(size=size), dtype=dtype) | ||
elif np.issubdtype(dtype, np.complexfloating): | ||
a_np = np.array( | ||
np.random.random(size=size) + np.random.random(size=size) * 1j, | ||
dtype=dtype, | ||
) | ||
else: | ||
assert False | ||
return a_np.reshape(shape) | ||
|
||
|
||
@pytest.mark.parametrize("right", (True, False)) | ||
def test_empty(right): | ||
bins = [0, 3, 5] | ||
assert len(num.digitize([], bins, right=right)) == 0 | ||
|
||
|
||
@pytest.mark.parametrize("shape", SHAPES, ids=str) | ||
@pytest.mark.parametrize("dtype", DTYPES, ids=str) | ||
@pytest.mark.parametrize("right", (True, False)) | ||
def test_ndmin(shape, dtype, right): | ||
a = generate_random(shape, dtype) | ||
bins = [0, 3, 5] | ||
|
||
a_num = num.array(a) | ||
bins_num = num.array(bins) | ||
|
||
res_np = np.digitize(a, bins, right=right) | ||
res_num = num.digitize(a, bins, right=right) | ||
assert num.array_equal(res_np, res_num) | ||
|
||
res_np = np.digitize(a, bins, right=right) | ||
res_num = num.digitize(a_num, bins, right=right) | ||
assert num.array_equal(res_np, res_num) | ||
|
||
res_np = np.digitize(a, bins, right=right) | ||
res_num = num.digitize(a_num, bins_num, right=right) | ||
assert num.array_equal(res_np, res_num) | ||
|
||
|
||
if __name__ == "__main__": | ||
import sys | ||
|
||
sys.exit(pytest.main(sys.argv)) |