Standalone cellfinder cell detection algorithm
This package implements the cell detection algorithm from Tyson, Rousseau & Niedworok et al. (2021) without any dependency on data type (i.e. it can be used outside of whole-brain microscopy).
cellfinder-core
supports the
cellfinder software for
whole-brain microscopy analysis, and the algorithm can also be implemented in
napari using the
cellfinder napari plugin.
cellfinder-core
supports Python >=3.7,
and works across Linux, Windows, and should work on most versions of macOS
(although this is not tested).
Assuming you have a Python environment set up
(e.g. using conda),
you can install cellfinder-core
with:
pip install cellfinder-core
Once you have installed napari. You can install napari either through the napari plugin installation tool, or directly from PyPI with:
pip install cellfinder-napari
N.B. To speed up cellfinder, you need CUDA & cuDNN installed. Instructions here.
Before using cellfinder-core, it may be useful to take a look at the preprint which outlines the algorithm.
The API is not yet fully documented. For an idea of what the parameters do, see the documentation for the cellfinder whole-brain microscopy image analysis command-line tool (cell candidate detection, cell candidate classification). It may also be useful to try the cellfinder napari plugin so you can adjust the parameters in a GUI.
from cellfinder_core.main import main as cellfinder_run
import tifffile
signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")
voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)
The output is a list of
imlib Cell objects.
Each Cell
has a centroid coordinate, and a type:
print(detected_cells[0])
# Cell: x: 132, y: 308, z: 10, type: 2
Cell type 2 is a "real" cell, and Cell type 1 is a "rejected" object (i.e. not classified as a cell):
from imlib.cells.cells import Cell
print(Cell.CELL)
# 2
print(Cell.NO_CELL)
# 1
If you want to save the detected cells for use in other BrainGlobe software (e.g. the cellfinder napari plugin), you can save in the cellfinder XML standard:
from imlib.IO.cells import save_cells
save_cells(detected_cells, "/path/to/cells.xml")
You can load these back with:
from imlib.IO.cells import get_cells
cells = get_cells("/path/to/cells.xml")
cellfinder-core
supports most array-like objects. Using
Dask arrays allows for lazy
loading of data, allowing large (e.g. TB) datasets to be processed.
cellfinder-core
comes with a function
(based on napari-ndtiffs) to
load a series of image files (e.g. a directory of 2D tiff files) as a Dask
array. cellfinder-core
can then be used in the same way as with a numpy array.
from cellfinder_core.main import main as cellfinder_run
from cellfinder_core.tools.IO import read_with_dask
signal_array = read_with_dask("/path/to/signal_image_directory")
background_array = read_with_dask("/path/to/background_image_directory")
voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)
import tifffile
from pathlib import Path
from cellfinder_core.detect import detect
from cellfinder_core.classify import classify
from cellfinder_core.tools.prep import prep_classification
signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")
voxel_sizes = [5, 2, 2] # in microns
home = Path.home()
install_path = home / ".cellfinder" # default
start_plane=0
end_plane=-1
trained_model=None
model_weights=None
model="resnet50_tv"
batch_size=32
n_free_cpus=2
network_voxel_sizes=[5, 1, 1]
soma_diameter=16
ball_xy_size=6
ball_z_size=15
ball_overlap_fraction=0.6
log_sigma_size=0.2
n_sds_above_mean_thresh=10
soma_spread_factor=1.4
max_cluster_size=100000
cube_width=50
cube_height=50
cube_depth=20
network_depth="50"
model_weights = prep_classification(
trained_model, model_weights, install_path, model, n_free_cpus
)
cell_candidates = detect.main(
signal_array,
start_plane,
end_plane,
voxel_sizes,
soma_diameter,
max_cluster_size,
ball_xy_size,
ball_z_size,
ball_overlap_fraction,
soma_spread_factor,
n_free_cpus,
log_sigma_size,
n_sds_above_mean_thresh,
)
if len(cell_candidates) > 0: # Don't run if there's nothing to classify
classified_cells = classify.main(
cell_candidates,
signal_array,
background_array,
n_free_cpus,
voxel_sizes,
network_voxel_sizes,
batch_size,
cube_height,
cube_width,
cube_depth,
trained_model,
model_weights,
network_depth,
)
The training data needed are matched pairs (signal & background) of small (usually 50 x 50 x 100um) images centered on the coordinate of candidate cells. These can be generated however you like, but I recommend using the Napari plugin.
cellfinder-core
comes with a 50-layer ResNet trained on ~100,000 data points
from serial two-photon microscopy images of mouse brains
(available here).
Training the network is likely simpler using the command-line interface or the Napari plugin, but it is possible through the Python API.
from pathlib import Path
from cellfinder_core.train.train_yml import run as run_training
# list of training yml files
yaml_files = [Path("/path/to/training_yml.yml)]
# where to save the output
output_directory = Path("/path/to/saved_training_data")
home = Path.home()
install_path = home / ".cellfinder" # default
run_training(
output_directory,
yaml_files,
install_path=install_path,
learning_rate=0.0001,
continue_training=True, # by default use supplied model
test_fraction=0.1,
batch_size=32,
save_progress=True,
epochs=10,
)
More documentation about cellfinder and other BrainGlobe tools can be found here.
This software is at a very early stage, and was written with our data in mind. Over time we hope to support other data types/formats. If you have any questions or issues, please get in touch by email, on the forum or by raising an issue.
cellfinder takes a stitched, but otherwise raw dataset with at least two channels:
- Background channel (i.e. autofluorescence)
- Signal channel, the one with the cells to be detected:
Raw coronal serial two-photon mouse brain image showing labelled cells
Classical image analysis (e.g. filters, thresholding) is used to find cell-like objects (with false positives):
Candidate cells (including many artefacts)
A deep-learning network (ResNet) is used to classify cell candidates as true cells or artefacts:
Cassified cell candidates. Yellow - cells, Blue - artefacts
If you find this plugin useful, and use it in your research, please cite the preprint outlining the cell detection algorithm:
Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., Strom, M. and Margrie, T. W. (2021) “A deep learning algorithm for 3D cell detection in whole mouse brain image datasets’ PLOS Computational Biology, 17(5), e1009074 https://doi.org/10.1371/journal.pcbi.1009074
If you use this, or any other tools in the brainglobe suite, please let us know, and we'd be happy to promote your paper/talk etc.