Skip to content

Commit

Permalink
Merge pull request #108 from nomad-coe/fdelesma-patch-2
Browse files Browse the repository at this point in the history
change align to eqnarray in the minipage enviroment
  • Loading branch information
aziziph authored Sep 13, 2023
2 parents d93f36c + bdc74ee commit 371f92c
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions JOSS/paper.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,19 +96,19 @@ The conversion between imaginary time and frequency grids relies on nonuniform d
with $F^\text{even}(x)=F^\text{even}(-x)$ and $F^\text{odd}(x)=-F^\text{odd}(-x)$. The same parity rules hold for quantities with a hat. The corresponding discrete Fourier transforms read [@liu2016cubic]
\noindent\begin{minipage}{.47\textwidth}
\fontsize{8}{10}\selectfont
\begin{align}
{\color{white}.}\hspace{-3em}F^\text{even}(i\omega_k) &= \sum_{j=1}^{n} \delta_{kj} \mathrm{cos}(\omega_k\tau_j)\hat{F}^\text{even}(i\tau_j)\label{ctsteven}
\begin{eqnarray}
\hspace{-2em}F^\text{even}(i\omega_k)\hspace{-1em} &=& \hspace{-1em}\sum_{j=1}^{n} \delta_{kj} \mathrm{cos}(\omega_k\tau_j)\hat{F}^\text{even}(i\tau_j)\label{ctsteven}
\\
{\color{white}.}\hspace{-3em}\hat{F}^\text{even}(i\tau_j) &= \sum_{k=1}^{n} \eta_{jk} \mathrm{cos}(\tau_j\omega_k)F^\text{even}(i\omega_k)\label{ct_even_w_to_t}
\end{align}
\hspace{-2em}\hat{F}^\text{even}(i\tau_j) \hspace{-1em}&=&\hspace{-1em} \sum_{k=1}^{n} \eta_{jk} \mathrm{cos}(\tau_j\omega_k)F^\text{even}(i\omega_k)\label{ct_even_w_to_t}
\end{eqnarray}
\end{minipage}
\begin{minipage}{.53\textwidth}
\begin{minipage}{.52\textwidth}
\fontsize{8}{10}\selectfont
\begin{align}
F^\text{odd}(i\omega_k) &= i\sum_{j=1}^{n} \lambda_{kj} \mathrm{sin}(\omega_k\tau_j)\hat{F}^\text{odd}(i\tau_j)\label{stoddttow}
\begin{eqnarray}
F^\text{odd}(i\omega_k) \hspace{-1em}&=&\hspace{-1em} i\sum_{j=1}^{n} \lambda_{kj} \mathrm{sin}(\omega_k\tau_j)\hat{F}^\text{odd}(i\tau_j)\label{stoddttow}
\\
\hat{F}^\text{odd}(i\tau_j) &= -i \sum_{k=1}^{n} \zeta_{jk} \mathrm{sin}(\tau_j\omega_k)F^\text{odd}(i\omega_k)\label{ct_st_odd}
\end{align}
\hat{F}^\text{odd}(i\tau_j) \hspace{-1em}&=&\hspace{-1em} -i \sum_{k=1}^{n} \zeta_{jk} \mathrm{sin}(\tau_j\omega_k)F^\text{odd}(i\omega_k)\label{ct_st_odd}
\end{eqnarray}
\end{minipage}
where $\{\tau_j\}_{j=1}^n, \tau_j\,{>}\,0$ are again the time grid points, $\{\omega_k\}_{k=1}^n,\omega_k\,{>}\,0$ frequency grid points and $\{\delta_{kj}\}_{k,j=1}^n$, $\{\eta_{jk}\}_{k,j=1}^n$,$\{\lambda_{kj}\}_{k,j=1}^n$, $\{\zeta_{jk}\}_{k,j=1}^n$ the corresponding Fourier integration weights. $\hat{\chi}^0(i\tau)$ is an even function: the transform defined in Eq. \eqref{ctsteven} yields $\chi^0(i\omega)$. The screened Coulomb interaction is also even and Eq. \eqref{ct_even_w_to_t} converts $W(i\omega)$ to $\widehat{W}(i\tau)$. The self-energy, neither odd nor even, is treated with Eq. \eqref{Fw_split} in combination with Eqs. \eqref{ctsteven} and  \eqref{stoddttow} to transform $\widehat{\Sigma}(i\tau)$ to $\Sigma(i\omega)$ [@liu2016cubic]. The transformation defined in Eq. \eqref{ct_st_odd}, not required for the methods summarized in Fig. \ref{fig:flowchart}, is added for completeness.

Expand Down

0 comments on commit 371f92c

Please sign in to comment.